Задание 1 из ЕГЭ по математике (профиль): задача 90

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 16 сек.

В треугольник $ABC$ со сторонами $5$, $7$ и $9$ вписана окружность. К окружности проведена касательная так, что она пересекает две бо́льшие стороны треугольника $ABC$. Найдите периметр отсечённого треугольника.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В параллелограмме $MPKT$ известно, что $MP=15$, $MT=20$, $\sin∠ T={4} / {5}$ (см. рис.). Найдите меньшую высоту параллелограмма.

Найдите вписанный угол, опирающийся на дугу, длина которой равна ${5}/{18}$ длины окружности. Ответ дайте в градусах.

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=4√ {7}$, $\tg A={√ {3}} / {2}$ (см. рис.). Найдите $AB$.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, tgA = 0.4$. Найдите $AC$.