Задание 1 из ЕГЭ по математике (профиль): задача 182
Окружность радиусом $15$, вписанная в равнобедренный треугольник, делит боковую сторону этого треугольника в отношении $2:3$, считая от вершины основания. Во сколько раз длина окружности, описанной около этого треугольника, превосходит число $π$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь относится к площади прямоугольника как $√ {3}:2$.
В треугольнике $ABC$ угол $C$ равен $90^°$, катет $AC=16$, $\sin A={3} / {5}$ (см. рис.). Найдите $AB$.