Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $2$. Диагонали трапеции пе…

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 7 сек.

В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $2$. Диагонали трапеции пересекаются в точке $O$, площадь треугольника $BOC$ равна $3$. Найдите площадь четырёхугольника $BOCP$, где $P$ — точка пересечения продолжений боковых сторон трапеции.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

В параллелограмме $ABCD$ $AB = 6, AD = 9, sinA = {2}/{3}$. Найдите большую высоту параллелограмма.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, tgA = 0.4$. Найдите $AC$.

В треугольнике $ABC$ угол $A$ равен $75^°$, угол $C$ равен $35^°$, $AM$ — биссектриса, $T$ — такая точка на $AC$, что $AT = AB$. Найдите угол $CMT$. Ответ дайте в градусах.