Электромагнитные колебания и волны

Разбор сложных заданий в тг-канале:

Свободные электромагнитные колебания в колебательном контуре

Колебательный контур — это электрическая цепь, содержащая индуктивность L, емкость С и сопротивление R, в которой могут возбуждаться электрические колебания.

Колебательный контур — один из основных элементов радиотехнических систем. Различают линейные и нелинейные колебательные контуры. Параметры R,L и С линейного колебательного контура не зависят от интенсивности колебаний, а период колебаний не зависит от амплитуды.

При отсутствии потерь (R=0) в линейном колебательном контуре происходят свободные гармонические колебания.

Для возбуждения колебаний в контуре конденсатор предварительно заряжают от батареи аккумуляторов, сообщив ему энергию Wр и переводят переключатель в положение 2. После замыкания цепи конденсатор начнет разряжаться через катушку индуктивности, теряя энергию. В цепи появится ток, вызывающий переменное магнитное поле. Переменное магнитное поле, в свою очередь приводит к созданию вихревого электрического поля, препятствующего току, в результате чего изменение тока происходит постепенно. По мере увеличения тока через катушку возрастает энергия магнитного поля WM. Полная энергия W электромагнитного поля контура остается постоянной (при отсутствии сопротивления) и равной сумме энергий магнитного и электрического полей. Полная энергия, в силу закона сохранения энергии, равна максимальной энергии электрического или магнитного поля:

W=LI22+q22C=qm22C=LIm22

где L — индуктивность катушки, I и Im — сила тока и ее максимальное значение, q и qm — заряд конденсатора и его максимальное значение, C — емкость конденсатора.

Процесс перекачки энергии в колебательном контуре между электрическим полем конденсатора при его разрядке и магнитным полем, сосредоточенным в катушке, полностью аналогичен процессу превращения потенциальной энергии растянутой пружины или поднятого груза математического маятника в кинетическую энергию при механических колебаниях последних.

В таблице приводится соответствие между механическими и электрическими величинами при колебательных процессах.

Соответствие между механическими и электрическими величинами при колебательных процессах

Механические величины Электрические величины
Координата х
Скорость υ
Масса m
Жесткость пружины k
Потенциальная энергия kх2/2
Кинетическая энергия m2/2
Заряд q
Сила тока i
Индуктивность L
Величина, обратная емкости 1/С
Энергия электрического поля q2/(2С)
Энергия магнитного поля Li2/2

Дифференциальное уравнение, описывающее процессы в колебательном контуре, можно получить, приравняв производную по полной энергии контура к нулю (поскольку полная энергия постоянна) и заменив в полученном уравнении ток на производную заряда по времени. В окончательном виде уравнение выглядит так:

q=1LCq

Как видно, уравнение ничем не отличается по форме от соответствующего дифференциального уравнения для свободных механических колебаний шарика на пружине. Заменив механические параметры системы на электрические с помощью приведенной выше таблицы, мы в точности получим уравнение.

По аналогии с решением дифференциального уравнения для механической колебательной системы циклическая частота свободных электрических колебаний равна:

ω0=1LC

Период свободных колебаний в контуре равен:

T=2πω0=2πLC

Формула T=2πω0=2πLC называется формулой Томсона в честь английского физика У. Томсона (Кельвина), который ее вывел.

Увеличение периода свободных колебаний с возрастанием L и С объясняется тем, что при увеличении индуктивности ток медленнее нарастает и медленнее падает до нуля, а чем больше емкость, тем больше времени требуется для перезарядки конденсатора.

Гармонические колебания заряда и тока описываются теми же уравнениями, что и их механические аналоги:

q=qmcosω0t

i=q=ω0qmsinω0t=Imcos(ω0t+π2)

где qm — амплитуда колебаний заряда, Im=ω0qm — амплитуда колебаний силы тока. Колебания силы тока опережают по фазе на π2 колебания заряда.

Бесплатный интенсив по физике

На бесплатном интенсиве ты:
  • 🔥 Получишь мощный старт для дальнейшей подготовки.
  • 🔥 Прокачаешь свою Кинематику.
  • 🔥 Узнаешь все о Линзах в ЕГЭ.
  • 🔥 Будешь решать задачи с дифракционной решеткой на ИЗИ.
  • 🔥 Улучшишь свои резы на 20 вторичных баллов ЕГЭ.

Что тебя ждет?

  • 👉 7 вебинаров (по 1 вебчику в неделю: согласись, не напряжно, да?).
  • 👉 Домашка после каждого веба (без дедлайна, лето все-таки, делай, когда удобно).
  • 👉 Скрипты и конспекты, полезные материалы к каждому занятию.
  • 👉 Личный кабинет Турбо (это супер-мега удобная площадка 🔥).
  • 👉 Тренажёр для отработки заданий (все в том же личном кабинете).
  • 👉 Отдельная беседа с преподавателями и однокурсниками.
  • 👉 Комфортная атмосфера, эффективная подготовка + чувство, что лето проводишь не зря 🔥.

Составим твой персональный план подготовки к ЕГЭ

Хочу!