Задание 12 из ЕГЭ по математике (база): задача 379

Разбор сложных заданий в тг-канале:

 Острые углы прямоугольного треугольника равны $22^°$ и $68^°$. Найдите угол между высотой и биссектрисой, проведёнными из вершины прямого угла. Ответ дайте в градусах (см. рис.).

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания равнобедренной трапеции 12 и 28, боковая сторона равна 17. Найдите высоту трапеции.

Стороны параллелограмма равны 16 и 20. Высота, опущенная на меньшую сторону, равна 15. Найдите длину высоты, опущенной на большую сторону параллелограмма.

В параллелограмме ABCD проведена биссектриса угла A, пересекающая сторону BC в точке F. Найдите FC, если AB = 5, а периметр параллелограмма равен 24.

В треугольнике ABC известно, что AC = 24, AB = BC = 15. Найдите длину медианы BD.

Составим твой персональный план подготовки к ЕГЭ

Хочу!