Задание 12 из ЕГЭ по математике (база): задача 377

Разбор сложных заданий в тг-канале:

В равнобедренном треугольнике $ABC$ c основанием $AB = 32$ из вершины $A$ опущена высота $AK$. Найдите $\cos A$, если $BK = 8$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Четырёхугольник вписан в окружность. Угол ADC равен $100°$, угол CAD равен $61°$. Найдите угол ABD. Ответ дайте в градусах.

В треугольнике MLN известно, что ML = LN, медиана HL равна $8$. Площадь треугольника MLN равна $64√{15}$. Найдите длину стороны ML.

В равнобедренном треугольнике $LNK$ боковые стороны $LN = NK = 5$, основание $LK = 6, NM$ - биссектриса угла $LNK$. Найдите $sin∠NLM$.

Один из внешних углов треугольника равен $80^°$. Углы, не смежные с данным внешним углом, относятся как $2:3$ (см. рис.). Найдите наибольший из них. Ответ дайте в градусах.

Составим твой персональный план подготовки к ЕГЭ

Хочу!