Задание 12 из ЕГЭ по математике (профиль): задача 89

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 55 сек.

Найдите точку максимума функции $y=0,\!5x^2-23x+60\ln x -5.$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Рассмотрите функцию $y = 4^{-23-10x-x^2}$ и найдите её наибольшее значение.

Найдите наименьшее значение функции $y = 5x^2 -12x+2 ln x+37$ на отрезке $[{3}/{5};{7}/{5}]$.

Рассмотрите функцию $y = 5^{x^{2}-8x+19}$ и найдите её наименьшее значение.

Рассмотрите функцию $y = √{-500- 60x - x^{2}}$ и найдите её наибольшее значение.