Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Бесплатный интенсив по математике (профиль)

28 марта — 3 апреля

На бесплатном интенсиве ты:
✅ Научишься решать показательные и логарифмические уравнения, которые встречаются в №5 и №12 в ЕГЭ.
✅ Сможешь выполнять №10 с показательными и логарифмическими функциями.
✅ Запомнишь квадраты и кубы чисел, которые встречаются чаще всего в вариантах.
✅ Узнаешь, как правильно оформлять уравнение №12 в бланке.
✅ Вспомнишь все свойства степеней, а также все основные сдвиги функций.

В треугольнике $ABC$ угол $A$ равен $17°$, угол $C$ равен $117°$, $BD$ — биссектриса внешн…

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 7 сек.

В треугольнике $ABC$ угол $A$ равен $17°$, угол $C$ равен $117°$, $BD$ — биссектриса внешнего угла при вершине $B$, причем точка $D$ лежит на прямой $AC$. На продолжении стороны $AB$ за точку $B$ выбрана такая точка $K$, что $BK=BC$. Найдите угол $ADK$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В параллелограмме $ABCD$ $AB = 6, AD = 9, sinA = {2}/{3}$. Найдите большую высоту параллелограмма.

В треугольнике $ABC$ сторона $AC$ равна стороне $BC$, $AB=12$ и $\tg ∠ BAC={3√ {7}} / {7}$
(см. рис.). Найдите высоту $AH$.

Найдите периметр прямоугольника, если его площадь равна $224$, а отношение соседних сторон равно ${2} / {7}$.

Угол при вершине, противолежащей основанию равнобедренного треугольника, равен $30^°$. Боковая сторона треугольника равна $7$. Найдите площадь этого треугольника.