Зарегистрироваться Войти через вк

Найдите наименьшее значение функции $y = x√x - 6x + 2000$ на отрезке $[2; 30]$.

Сложность:
Среднее время решения: 3 мин. 30 сек.

Найдите наименьшее значение функции $y = x√x - 6x + 2000$ на отрезке $[2; 30]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите наибольшее значение функции $y = 4x^2 - 19x + 11 ln x + 715$ на отрезке $[{3}/{4};{5}/{4}]$.

Найдите точку минимума функции $y=√ {x^2-12x+40}$.

Найдите точку максимума функции $y = (x + 3)^{2}e^{x-2016}$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.