Взаимосвязь неорганических веществ

Теория к заданию 9 из ЕГЭ по химии

Разбор сложных заданий в тг-канале:

Материальный мир, в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом. Например, ряд, записанный с помощью следующих формул:

Br2HBrNaBrNaNO3,

нельзя считать генетическим, т.к. в последнем звене элемент бром отсутствует, хотя реакция для перехода от NaBr к NaNO3 легко осуществима:

NaBr+AgNO3=AgBr+NaNO3.

Этот ряд мог бы считаться генетическим рядом элемента брома, если бы его завершили, например, так:

Br2HBrNaBrAgBr.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, т.е. отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Например, приведенный выше генетический ряд брома будет неполным, незавершенным. А вот следующий ряд:

Br2HBrNaBrAgBrBr2

уже можно рассматривать как полный: он начинался простым веществом — бромом и им же закончился. Обобщая сказанное выше, можно дать следующее определение генетического ряда.

Генетическим называется ряд веществ — представителей разных классов, являющихся соединениями одного химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь — понятие более общее, чем генетический ряд, который является пусть и ярким, но частным проявлением этой связи, реализующейся при любых взаимных превращениях веществ. Тогда, очевидно, под это определение подходит и первый приведенный в тексте ряд веществ.

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов.

Генетический ряд металла.

Наиболее богат ряд металла, у которого проявляются разные степени окисления. В качестве примера рассмотрим генетический ряд железа со степенями окисления +2 и +3:

FeметаллFeCl2соль — хлорид железа(II) Fe(OH)2основание — гидроксид железа(II) FeOосновный оксид — оксид железа(II) Feметалл FeCl3соль — хлорид железа(III) Fe(OH)3гидроксид железа (III) — амфотерное соединение с преобладанием основных свойств Fe2O3оксид железа(III), аналогичен по свойствам соответствующему гидроксиду Feметалл

Напомним, что для окисления железа в хлорид железа (II) нужно взять более слабый окислитель, чем для получения хлорида железа (III):

Генетический ряд неметалла.

Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например, генетический ряд серы со степенями окисления +4 и +6:

SнеметаллSO2кислотный оксид — оксид серы (IV) HSO3сернистая кислота NaSO3соль — сульфит натрия SO2кислотный оксид — оксид серы (IV) SO3кислотный оксид — оксид серы (VI) HSO4серная кислота SO2кислотный оксид — оксид серы (IV) Sнеметалл

Затруднение может вызвать лишь последний переход. Руководствуйтесь правилом: чтобы получить простое вещество из окисленного соединения элемента, нужно взять для этой цели самое восстановленное его соединение, например, летучее водородное соединение неметалла. В нашем случае:

SO2+4+2H2S2=2H2O+S0.

По этой реакции в природе из вулканических газов образуется сера.

Аналогично для хлора:

KCl+5O3+6HCl1=KCl1+3Cl20+H2O.

Генетический ряд металла, которому соответствуют амфотерные оксид и гидроксид, очень богат связями, т.к. они проявляют в зависимости от условий то кислотные, то основные свойства.

Например, рассмотрим генетический ряд цинка:

Практика: решай 9 задание и тренировочные варианты ЕГЭ по химии

Бесплатный интенсив по химии

На бесплатном интенсиве ты:
  • 👉 Узнаешь самые алгоритмичные задания в КИМе и научишься их решать.
  • 👉 Познакомишься со всеми разделами ЕГЭ и изучишь их основы.
  • 👉 Научишься проводить настоящие химические эксперименты.
  • 👉 Поймешь, какие формулы нужны на ЕГЭ по химии и как ими пользоваться.

У тебя будет:

  • 🤑 Возможность выиграть бесплатный доступ к сентябрьскому курсу.
  • ✍️ Домашка после каждого веба без дедлайна (делай, когда тебе удобно).
  • 📖 Скрипты, конспекты, множество полезных материалов и лайфхаков.
  • 🚀 Удобный личный кабинет: расписание вебов, домашки, твой прогресс и многое другое.
  • 😌 Уютная атмосфера, в которой тебе рады!
  • 🗣️ Отдельная беседа в ТГ с сокурсниками и преподавателями.

Составим твой персональный план подготовки к ЕГЭ

Хочу!