Давление. Сила Архимеда
Закон Паскаля
Гидростатика (от греч. hydor — вода и statos — стоящий) — один из подразделов механики, изучающий равновесие жидкости, а также равновесие твердых тел, частично или полностью погруженных в жидкость.
Закон Паскаля — основной закон гидростатики, согласно которому давление на поверхность жидкости, произведенное внешними силами, передается жидкостью одинаково во всех направлениях.
Этот закон был открыт французским ученым Б. Паскалем в 1653 г. и опубликован в 1663 г.
Чтобы убедиться в справедливости закона Паскаля, достаточно проделать простой опыт. Присоединим к трубке с поршнем полый шар со множеством маленьких отверстий. Наполнив шар водой, нажмем на поршень, чтобы увеличить в нем давление. Вода начнет выливаться, но не только через то отверстие, которое находится на линии действия прилагаемой нами силы, а и через все остальные тоже. Причем напор воды, обусловленный внешним давлением, во всех появившихся струйках будет одинаковым.
Аналогичный результат мы получим в том случае, если вместо воды будем использовать дым. Таким образом, закон Паскаля справедлив не только для жидкостей, но и для газов.
Жидкости и газы передают оказываемое на них давление по всем направлениям одинаково.
Передача давления жидкостями и газами во всех направлениях одновременно объясняется достаточно высокой подвижностью частиц, из которых они состоят.
Давление покоящейся жидкости на дно и стенки сосуда (гидростатическое давление)
Жидкости (и газы) передают по всем направлениям не только внешнее давление, но и то давление, которое существует внутри них благодаря весу собственных частей.
Давление, оказываемое покоящейся жидкостью, называется гидростатическим.
Получим формулу для расчета гидростатического давления жидкости на произвольной глубине $h$ (в окрестности точки А на рисунке).
Сила давления, действующая со стороны вышележащего узкого столба жидкости, может быть выражена двумя способами:
1) как произведение давления $р$ в основании этого столба на площадь его сечения $S$:
$F=pS;$
2) как вес того же столба жидкости, т. е. произведение массы $m$ жидкости на ускорение свободного падения:
$F=mg$
Масса жидкости может быть выражена через ее плотность $р$ и объем $V$:
$m=pV,$
а объем — через высоту столба и площадь его поперечного сечения:
$V=Sh$
Подставляя в формулу $F=mg$ значение массы из $m=pV$ и объема из $V=Sh$, получим:
$F=pVg=pShg$
Приравнивая выражения $F=pS$ и $F=pVg=pShg$ для силы давления, получим:
$pS=pShg$
Разделив обе части последнего равенства на площадь $S$, найдем давление жидкости на глубине $h$:
$p=phg$
Это и есть формула гидростатического давления.
Гидростатическое давление на любой глубине внутри жидкости не зависит от формы сосуда, в котором находится жидкость, и равно произведению плотности жидкости, ускорения свободного падения и глубины, на которой определяется давление.
Важно еще раз подчеркнуть, что по формуле гидростатического давления можно рассчитывать давление жидкости, налитой в сосуд любой формы, в том числе давление на стенки сосуда, а также давление в любой точке жидкости, направленное снизу вверх, поскольку давление на одной и той же глубине одинаково по всем направлениям.
С учетом атмосферного давления $р_0$, формула для давления покоящейся в ИСО жидкости на глубине $h$ запишется следующим образом:
$p=p_0+pgh$
Гидростатический парадокс
Гидростатический парадокс — явление, заключающееся в том, что вес жидкости, налитой в сосуд, может отличаться от силы давления жидкости на дно сосуда.
В данном случае под словом «парадокс» понимают неожиданное явление, не соответствующее обычным представлениям.
Так, в расширяющихся кверху сосудах сила давления на дно меньше веса жидкости, а в сужающихся — больше. В цилиндрическом сосуде обе силы одинаковы. Если одна и та же жидкость налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на разный вес налитой жидкости, сила давления на дно одинакова для всех сосудов и равна весу жидкости в цилиндрическом сосуде.
Это следует из того, что давление покоящейся жидкости зависит только от глубины под свободной поверхностью и от плотности жидкости: $p=pgh$ (формула гидростатического давления). А так как площадь дна у всех сосудов одинакова, то и сила, с которой жидкость давит на дно этих сосудов, одна и та же. Она равна весу вертикального столба $АВСD$ жидкости: $P=pghS$, здесь $S$ — площадь дна (хотя масса, а следовательно, и вес в этих сосудах различны).
Гидростатический парадокс объясняется законом Паскаля — способностью жидкости передавать давление одинаково во всех направлениях.
Из формулы гидростатического давления следует, что одно и то же количество воды, находясь в разных сосудах, может оказывать разное давление на дно. Поскольку это давление зависит от высоты столба жидкости, то в узких сосудах оно будет больше, чем в широких. Благодаря этому даже небольшим количеством воды можно создавать очень большое давление. В 1648 г. это очень убедительно продемонстрировал Б. Паскаль. Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, вылил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.
Закон Архимеда
Закон Архимеда — закон статики жидкостей и газов, согласно которому на всякое тело, погруженное в жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа) и направленная по вертикали вверх.
Этот закон был открыт древнегреческим ученым Архимедом в III в. до н. э. Свои исследования Архимед описал в трактате «О плавающих телах», который считается одним из последних его научных трудов.
Ниже приведены выводы, следующие из закона Архимеда.
Действие жидкости и газа на погруженное в них тело
Если погрузить в воду мячик, наполненный воздухом, и отпустить его, то он всплывет. То же самое произойдет со щепкой, с пробкой и многими другими телами. Какая же сила заставляет их всплывать?
На тело, погруженное в воду, со всех сторон действуют силы давления воды. В каждой точке тела эти силы направлены перпендикулярно его поверхности. Если бы все эти силы были одинаковы, тело испытывало бы лишь всестороннее сжатие. Но на разных глубинах гидростатическое давление различно: оно возрастает с увеличением глубины. Поэтому силы давления, приложенные к нижним участкам тела, оказываются больше сил давления, действующих на тело сверху.
Если заменить все силы давления, приложенные к погруженному в воду телу, одной (результирующей или равнодействующей) силой, оказывающей на тело то же самое действие, что и все эти отдельные силы вместе, то результирующая сила будет направлена вверх. Это и заставляет тело всплывать. Эта сила называется выталкивающей силой, или архимедовой силой (по имени Архимеда, который впервые указал на ее существование и установил, от чего она зависит). На рисунке она обозначена как $F_A$.
Архимедова (выталкивающая) сила действует на тело не только в воде, но и в любой другой жидкости, т. к. в любой жидкости существует гидростатическое давление, разное на разных глубинах. Эта сила действует и в газах, благодаря чему летают воздушные шары и дирижабли.
Благодаря выталкивающей силе вес любого тела, находящегося в воде (или в любой другой жидкости), оказывается меньше, чем в воздухе, а в воздухе меньше, чем в безвоздушном пространстве. В этом легко убедиться, взвесив гирю с помощью учебного пружинного динамометра сначала в воздухе, а затем опустив ее в сосуд с водой.
Уменьшение веса происходит и при переносе тела из вакуума в воздух (или какой-либо другой газ).
Если вес тела в вакууме (например, в сосуде, из которого откачан воздух) равен $Р_0$, то его вес в воздухе равен:
$P{возд}=P_0-F'A,$
где $F'A$ — архимедова сила, действующая на данное тело в воздухе. Для большинства тел эта сила ничтожно мала и ею можно пренебречь, т. е. можно считать, что $P{возд}=P_0=mg$.
Вес тела в жидкости уменьшается значительно сильнее, чем в воздухе. Если вес тела в воздухе $P{возд}=P_0$, то вес тела в жидкости равен $Р{жидк}= Р_0 - F_A$. Здесь $F_A$ — архимедова сила, действующая в жидкости. Отсюда следует, что
$F_A=P_0-P{жидк}$
Поэтому чтобы найти архимедову силу, действующую на тело в какой-либо жидкости, нужно это тело взвесить в воздухе и в жидкости. Разность полученных значений и будет архимедовой (выталкивающей) силой.
Другими словами, учитывая формулу $F_A=P_0-P_{жидк}$, можно сказать:
Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу жидкости, вытесненной этим телом.
Определить архимедову силу можно также теоретически. Для этого предположим, что тело, погруженное в жидкость, состоит из той же жидкости, в которую оно погружено. Мы имеем право это предположить, так как силы давления, действующие на тело, погруженное в жидкость, не зависят от вещества, из которого оно сделано. Тогда приложенная к такому телу архимедова сила $F_A$ будет уравновешена действующей вниз силой тяжести $m_{ж}g$ (где $m_{ж}$ — масса жидкости в объеме данного тела):
$F_{a}=m_{ж}g$
Но сила тяжести $m_{ж}g$ равна весу вытесненной жидкости $Р_ж$, Таким образом,
$F_A=P_ж$
Учитывая, что масса жидкости равна произведению ее плотности $р_ж$ на объем, формулу $F_{A}=m_{ж}g$ можно записать в виде:
$F_A=p_{ж}V_{ж}g$
где $V_ж$ — объем вытесненной жидкости. Этот объем равен объему той части тела, которая погружена в жидкость. Если тело погружено в жидкость целиком, то он совпадает с объемом $V$ всего тела; если же тело погружено в жидкость частично, то объем $V_ж$ вытесненной жидкости меньше объема $V$ тела.
Формула $F_{A}=m_{ж}g$ справедлива и для архимедовой силы, действующей в газе. Только в этом случае в нее следует подставлять плотность газа и объем вытесненного газа, а не жидкости.
С учетом вышеизложенного закон Архимеда можно сформулировать так:
На всякое тело, погруженное в покоящуюся жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная произведению плотности жидкости (или газа), ускорения свободного падения и объема той части тела, которая погружена в жидкость (или газ).