Давление. Сила Архимеда

Разбор сложных заданий в тг-канале:

Закон Паскаля

Гидростатика (от греч. hydor — вода и statos — стоящий) — один из подразделов механики, изучающий равновесие жидкости, а также равновесие твердых тел, частично или полностью погруженных в жидкость.

Закон Паскаля — основной закон гидростатики, согласно которому давление на поверхность жидкости, произведенное внешними силами, передается жидкостью одинаково во всех направлениях.

Этот закон был открыт французским ученым Б. Паскалем в 1653 г. и опубликован в 1663 г.

Чтобы убедиться в справедливости закона Паскаля, достаточно проделать простой опыт. Присоединим к трубке с поршнем полый шар со множеством маленьких отверстий. Наполнив шар водой, нажмем на поршень, чтобы увеличить в нем давление. Вода начнет выливаться, но не только через то отверстие, которое находится на линии действия прилагаемой нами силы, а и через все остальные тоже. Причем напор воды, обусловленный внешним давлением, во всех появившихся струйках будет одинаковым.

Аналогичный результат мы получим в том случае, если вместо воды будем использовать дым. Таким образом, закон Паскаля справедлив не только для жидкостей, но и для газов.

Жидкости и газы передают оказываемое на них давление по всем направлениям одинаково.

Передача давления жидкостями и газами во всех направлениях одновременно объясняется достаточно высокой подвижностью частиц, из которых они состоят.

Давление покоящейся жидкости на дно и стенки сосуда (гидростатическое давление)

Жидкости (и газы) передают по всем направлениям не только внешнее давление, но и то давление, которое существует внутри них благодаря весу собственных частей.

Давление, оказываемое покоящейся жидкостью, называется гидростатическим.

Получим формулу для расчета гидростатического давления жидкости на произвольной глубине h (в окрестности точки А на рисунке).

Сила давления, действующая со стороны вышележащего узкого столба жидкости, может быть выражена двумя способами:

1) как произведение давления р в основании этого столба на площадь его сечения S:

F=pS;

2) как вес того же столба жидкости, т. е. произведение массы m жидкости на ускорение свободного падения:

F=mg

Масса жидкости может быть выражена через ее плотность р и объем V:

m=pV,

а объем — через высоту столба и площадь его поперечного сечения:

V=Sh

Подставляя в формулу F=mg значение массы из m=pV и объема из V=Sh, получим:

F=pVg=pShg

Приравнивая выражения F=pS и F=pVg=pShg для силы давления, получим:

pS=pShg

Разделив обе части последнего равенства на площадь S, найдем давление жидкости на глубине h:

p=phg

Это и есть формула гидростатического давления.

Гидростатическое давление на любой глубине внутри жидкости не зависит от формы сосуда, в котором находится жидкость, и равно произведению плотности жидкости, ускорения свободного падения и глубины, на которой определяется давление.

Важно еще раз подчеркнуть, что по формуле гидростатического давления можно рассчитывать давление жидкости, налитой в сосуд любой формы, в том числе давление на стенки сосуда, а также давление в любой точке жидкости, направленное снизу вверх, поскольку давление на одной и той же глубине одинаково по всем направлениям.

С учетом атмосферного давления р0, формула для давления покоящейся в ИСО жидкости на глубине h запишется следующим образом:

p=p0+pgh

Гидростатический парадокс

Гидростатический парадокс — явление, заключающееся в том, что вес жидкости, налитой в сосуд, может отличаться от силы давления жидкости на дно сосуда.

В данном случае под словом «парадокс» понимают неожиданное явление, не соответствующее обычным представлениям.

Так, в расширяющихся кверху сосудах сила давления на дно меньше веса жидкости, а в сужающихся — больше. В цилиндрическом сосуде обе силы одинаковы. Если одна и та же жидкость налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на разный вес налитой жидкости, сила давления на дно одинакова для всех сосудов и равна весу жидкости в цилиндрическом сосуде.

Это следует из того, что давление покоящейся жидкости зависит только от глубины под свободной поверхностью и от плотности жидкости: p=pgh (формула гидростатического давления). А так как площадь дна у всех сосудов одинакова, то и сила, с которой жидкость давит на дно этих сосудов, одна и та же. Она равна весу вертикального столба АВСD жидкости: P=pghS, здесь S — площадь дна (хотя масса, а следовательно, и вес в этих сосудах различны).

Гидростатический парадокс объясняется законом Паскаля — способностью жидкости передавать давление одинаково во всех направлениях.

Из формулы гидростатического давления следует, что одно и то же количество воды, находясь в разных сосудах, может оказывать разное давление на дно. Поскольку это давление зависит от высоты столба жидкости, то в узких сосудах оно будет больше, чем в широких. Благодаря этому даже небольшим количеством воды можно создавать очень большое давление. В 1648 г. это очень убедительно продемонстрировал Б. Паскаль. Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, вылил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.

Закон Архимеда

Закон Архимеда — закон статики жидкостей и газов, согласно которому на всякое тело, погруженное в жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа) и направленная по вертикали вверх.

Этот закон был открыт древнегреческим ученым Архимедом в III в. до н. э. Свои исследования Архимед описал в трактате «О плавающих телах», который считается одним из последних его научных трудов.

Ниже приведены выводы, следующие из закона Архимеда.

Действие жидкости и газа на погруженное в них тело

Если погрузить в воду мячик, наполненный воздухом, и отпустить его, то он всплывет. То же самое произойдет со щепкой, с пробкой и многими другими телами. Какая же сила заставляет их всплывать?

На тело, погруженное в воду, со всех сторон действуют силы давления воды. В каждой точке тела эти силы направлены перпендикулярно его поверхности. Если бы все эти силы были одинаковы, тело испытывало бы лишь всестороннее сжатие. Но на разных глубинах гидростатическое давление различно: оно возрастает с увеличением глубины. Поэтому силы давления, приложенные к нижним участкам тела, оказываются больше сил давления, действующих на тело сверху.

Если заменить все силы давления, приложенные к погруженному в воду телу, одной (результирующей или равнодействующей) силой, оказывающей на тело то же самое действие, что и все эти отдельные силы вместе, то результирующая сила будет направлена вверх. Это и заставляет тело всплывать. Эта сила называется выталкивающей силой, или архимедовой силой (по имени Архимеда, который впервые указал на ее существование и установил, от чего она зависит). На рисунке она обозначена как FA.

Архимедова (выталкивающая) сила действует на тело не только в воде, но и в любой другой жидкости, т. к. в любой жидкости существует гидростатическое давление, разное на разных глубинах. Эта сила действует и в газах, благодаря чему летают воздушные шары и дирижабли.

Благодаря выталкивающей силе вес любого тела, находящегося в воде (или в любой другой жидкости), оказывается меньше, чем в воздухе, а в воздухе меньше, чем в безвоздушном пространстве. В этом легко убедиться, взвесив гирю с помощью учебного пружинного динамометра сначала в воздухе, а затем опустив ее в сосуд с водой.

Уменьшение веса происходит и при переносе тела из вакуума в воздух (или какой-либо другой газ).

Если вес тела в вакууме (например, в сосуде, из которого откачан воздух) равен Р0, то его вес в воздухе равен:

Pвозд=P0FA,

где FA — архимедова сила, действующая на данное тело в воздухе. Для большинства тел эта сила ничтожно мала и ею можно пренебречь, т. е. можно считать, что Pвозд=P0=mg.

Вес тела в жидкости уменьшается значительно сильнее, чем в воздухе. Если вес тела в воздухе Pвозд=P0, то вес тела в жидкости равен Ржидк=Р0FA. Здесь FA — архимедова сила, действующая в жидкости. Отсюда следует, что

FA=P0Pжидк

Поэтому чтобы найти архимедову силу, действующую на тело в какой-либо жидкости, нужно это тело взвесить в воздухе и в жидкости. Разность полученных значений и будет архимедовой (выталкивающей) силой.

Другими словами, учитывая формулу FA=P0Pжидк, можно сказать:

Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу жидкости, вытесненной этим телом.

Определить архимедову силу можно также теоретически. Для этого предположим, что тело, погруженное в жидкость, состоит из той же жидкости, в которую оно погружено. Мы имеем право это предположить, так как силы давления, действующие на тело, погруженное в жидкость, не зависят от вещества, из которого оно сделано. Тогда приложенная к такому телу архимедова сила FA будет уравновешена действующей вниз силой тяжести mжg (где mж — масса жидкости в объеме данного тела):

Fa=mжg

Но сила тяжести mжg равна весу вытесненной жидкости Рж, Таким образом,

FA=Pж

Учитывая, что масса жидкости равна произведению ее плотности рж на объем, формулу FA=mжg можно записать в виде:

FA=pжVжg

где Vж — объем вытесненной жидкости. Этот объем равен объему той части тела, которая погружена в жидкость. Если тело погружено в жидкость целиком, то он совпадает с объемом V всего тела; если же тело погружено в жидкость частично, то объем Vж вытесненной жидкости меньше объема V тела.

Формула FA=mжg справедлива и для архимедовой силы, действующей в газе. Только в этом случае в нее следует подставлять плотность газа и объем вытесненного газа, а не жидкости.

С учетом вышеизложенного закон Архимеда можно сформулировать так:

На всякое тело, погруженное в покоящуюся жидкость (или газ), действует со стороны этой жидкости (или газа) выталкивающая сила, равная произведению плотности жидкости (или газа), ускорения свободного падения и объема той части тела, которая погружена в жидкость (или газ).

Бесплатный интенсив по физике

На бесплатном интенсиве ты:
  • 🔥 Получишь мощный старт для дальнейшей подготовки.
  • 🔥 Прокачаешь свою Кинематику.
  • 🔥 Узнаешь все о Линзах в ЕГЭ.
  • 🔥 Будешь решать задачи с дифракционной решеткой на ИЗИ.
  • 🔥 Улучшишь свои резы на 20 вторичных баллов ЕГЭ.

Что тебя ждет?

  • 👉 7 вебинаров (по 1 вебчику в неделю: согласись, не напряжно, да?).
  • 👉 Домашка после каждого веба (без дедлайна, лето все-таки, делай, когда удобно).
  • 👉 Скрипты и конспекты, полезные материалы к каждому занятию.
  • 👉 Личный кабинет Турбо (это супер-мега удобная площадка 🔥).
  • 👉 Тренажёр для отработки заданий (все в том же личном кабинете).
  • 👉 Отдельная беседа с преподавателями и однокурсниками.
  • 👉 Комфортная атмосфера, эффективная подготовка + чувство, что лето проводишь не зря 🔥.

Составим твой персональный план подготовки к ЕГЭ

Хочу!