Эволюция: теории возникновения и развития жизни на Земле

Разбор сложных заданий в тг-канале:

Гипотезы возникновения жизни на Земле

Из всего спектра гипотез образования Земли наибольшее количество фактов свидетельствует в пользу теории «Большого взрыва». Ввиду того, что данное научное допущение зиждется в основном на теоретических расчетах, подтвердить его экспериментально призван большой адронный коллайдер, сооруженный в Европейском центре ядерных исследований вблизи г. Женева (Швейцария). Согласно теории «Большого взрыва», Земля образовалась свыше 4,5 млрд лет назад вместе с Солнцем и другими планетами Солнечной системы в результате конденсации газопылевого облака. Снижение температуры планеты и миграция химических элементов на ней способствовали ее расслоению на ядро, мантию и кору, а происходившие затем геологические процессы (движение тектонических плит, вулканическая деятельность и т. д.) стали причиной формирования атмосферы и гидросферы.

Жизнь существует на Земле также очень давно, о чем свидетельствуют ископаемые остатки разнообразных организмов в горных породах, однако физические теории не могут дать ответа на вопрос о времени и причинах ее возникновения. Существуют две противоположные точки зрения на возникновение жизни на Земле: теории абиогенеза и биогенеза. Теории абиогенеза утверждают возможность происхождения живого из неживого. К ним относят креационизм, гипотезу самозарождения и теорию биохимической эволюции А. И. Опарина.

Фундаментальным положением креационизма являлось сотворение мира неким сверхъестественным существом (Творцом), что нашло свое отражение в мифах народов мира и религиозных культах, однако возраст планеты и жизни на ней намного превышает указанные в этих источниках сроки, да и несоответствий в них предостаточно.

Основателем теории самозарождения жизни считается древнегреческий ученый Аристотель, который утверждал, что возможно многократное появление новых существ, например, дождевых червей из луж, а червей и мух — из гнилого мяса. Однако эти воззрения были опровергнуты в XVII–XIX веках смелыми опытами Ф. Реди и Л. Пастера.

Итальянский врач Франческо Реди в 1688 году поместил кусочки мяса в горшки и плотно запечатал их, однако никаких червей в них не завелось, тогда как в открытых горшках они появились. Дабы опровергнуть бытовавшее тогда убеждение, что жизненное начало содержится в воздухе, он повторил свои опыты, однако горшки не запечатал, а закрыл несколькими слоями кисеи, и вновь жизнь не появилась. Несмотря на убедительные данные, полученные Ф. Реди, исследования А. ван Левенгука дали новую пищу для дискуссий о «жизненном начале», которые продолжились в течение всего следующего века.

Другой итальянский исследователь — Ладзаро Спалланцани — в 1765 году видоизменил опыты Ф. Реди, прокипятив в течение нескольких часов мясные и овощные отвары и запечатав их. По прошествии нескольких дней он также не обнаружил там никаких признаков жизни и сделал вывод, что живое может возникнуть только от живого.

Последний удар теории спонтанного самозарождения нанес великий французский микробиолог Луи Пастер в 1860 году, поместивший прокипяченный бульон в колбу с S-образным горлышком и не получивший никаких зародышей. Казалось бы, это свидетельствовало в пользу теорий биогенеза, однако оставался открытым вопрос о том, каким же путем возник самый-самый первый организм.

Ответить на него попытался советский биохимик А. И. Опарин, пришедший к выводу о том, что состав атмосферы Земли на первых этапах ее существования был совсем не таким, как в наше время. Скорее всего, она состояла из аммиака, метана, углекислого газа и водяных паров, но не содержала свободного кислорода. Под действием электрических разрядов высокой мощности и при высокой температуре в ней могли синтезироваться простейшие органические соединения, что и было подтверждено экспериментами С. Миллера и Г. Юри в 1953 году, получивших из вышеупомянутых соединений несколько аминокислот, простые углеводы, аденин, мочевину, а также простейшие жирные, муравьиную и уксусную кислоты.

Тем не менее синтез органических веществ еще не означает возникновения жизни, поэтому А. И. Опарин выдвинул гипотезу биохимической эволюции, согласно которой разнообразные органические вещества возникали и объединялись в более крупные молекулы на мелководьях морей и океанов, где условия для химического синтеза и полимеризации являются наиболее благоприятными. Первыми носителями жизни в настоящее время считаются молекулы РНК.

Некоторые из этих веществ постепенно образовывали в воде устойчивые комплексы — коацерваты, или коацерватные капли, напоминающие капли жира в бульоне. В эти коацерваты поступали разнообразные вещества из окружающего раствора, которые подвергались химическим превращениям, происходящим в каплях. Как и органические вещества, коацерваты сами по себе не являлись живыми существами, а были очередной ступенью в их возникновении.

Те из коацерватов, которые имели удачное соотношение веществ в своем составе, в особенности белки и нуклеиновые кислоты, благодаря каталитическим свойствам белков-ферментов со временем приобрели способность воспроизводить себе подобных и осуществлять реакции обмена веществ, при этом структуру белков кодировали нуклеиновые кислоты.

Однако, помимо размножения, для живых систем характерна зависимость от поступления энергии извне. Эта проблема первоначально решалась за счет бескислородного расщепления органических веществ из окружающей среды (кислорода в атмосфере на тот момент не было), т. е.

гетеротрофного питания. Некоторые из поглощаемых органических веществ оказались способными аккумулировать энергию солнечного света, как, например, хлорофилл, что дало возможность ряду организмов перейти к автотрофному питанию. Выделение кислорода в атмосферу в процессе фотосинтеза привело к появлению более эффективного кислородного дыхания, возникновению озонового слоя и, в конечном итоге, выходу организмов на сушу.

Таким образом, результатом химической эволюции явилось появление протобионтов — первичных живых организмов, от которых в результате биологической эволюции произошли все существующие в настоящее время виды.

Теория биохимической эволюции в наше время является наиболее подтвержденной, однако представление о конкретных механизмах возникновения жизни изменились. Например, выяснилось, что образование органических веществ начинается еще в космосе, а органические вещества играют важную роль даже в самом образовании планет, обеспечивая слипание мелких частей. Также формирование органических веществ происходит и в недрах планеты: при одном извержении вулкан выбрасывает до 15 т органики. Существуют и другие гипотезы относительно механизмов концентрирования органических веществ: замораживания раствора, абсорбции (связывания) на поверхности определенных минеральных соединений, действия природных катализаторов и т. п. Возникновение жизни на Земле в настоящее время невозможно, поскольку любые органические вещества, спонтанно образовавшиеся в любой точке планеты, тотчас же были бы окислены свободным кислородом атмосферы или использованы гетротрофными организмами. Это понимал еще в 1871 году Ч. Дарвин.

Теории биогенеза отрицают самопроизвольное зарождение жизни. Основными из них являются гипотеза стационарного состояния и гипотеза панспермии. Первая из них базируется на том, что жизнь существует вечно, тем не менее, на нашей планете есть очень древние породы, в которых следы деятельности органического мира отсутствуют.

Гипотеза панспермии утверждает, что зародыши жизни были занесены на Землю из космоса некими пришельцами либо божественным провидением. В пользу этой гипотезы свидетельствуют два факта: необходимость для всего живого достаточно редкого на планете, но часто встречающегося в метеоритах молибдена, а также находка организмов, похожих на бактерии, на метеоритах с Марса. Однако каким образом жизнь возникла на других планетах, остается невыясненным.

Основные ароморфозы в эволюции растений и животных

Вид, его критерии

Основатель современной систематики К. Линней рассматривал вид как группу сходных по морфологическим признакам организмов, которые свободно скрещиваются между собой. По мере развития биологии были получены свидетельства того, что различия между видами намного глубже, и затрагивают химический состав и концентрацию веществ в тканях, направление и скорость химических реакций, характер и интенсивность процессов жизнедеятельности, число и форму хромосом, т. е. вид является наименьшей группой организмов, отражающей их близкое родство. К тому же виды не существуют вечно — они возникают, развиваются, дают начало новым видам и исчезают.

Вид — это совокупность особей, сходных по строению и особенностям процессов жизнедеятельности, имеющих общее происхождение, свободно скрещивающихся между собой в природе и дающих плодовитое потомство.

Все особи одного вида имеют одинаковый кариотип и занимают в природе определенную географическую область — ареал.

Признаки сходства особей одного вида называют критериями вида. Так как ни один из критериев не является абсолютным, для правильного определения вида необходимо использовать совокупность критериев.

Основными критериями вида являются морфологический, физиологический, биохимический, экологический, географический, этологический (поведенческий) и генетический.

  1. Морфологический — совокупность внешних и внутренних признаков организмов одного вида. Несмотря на то, что у некоторых видов существуют уникальные признаки, с помощью одних только морфологических черт часто очень трудно различить близкородственные виды. Так, в последнее время открыт ряд видов-двойников, обитающих на одной территории, например домовая и курганчиковая мыши, поэтому использовать исключительно морфологический критерий для определения вида недопустимо.
  2. Физиологический — сходство процессов жизнедеятельности у организмов, в первую очередь, размножения. Он также не является универсальным, поскольку некоторые виды в природе скрещиваются и дают плодовитое потомство.
  3. Биохимический — сходство химического состава и протекания процессов обмена веществ. Несмотря на то, что данные показатели могут значительно варьировать у разных особей одного вида, в настоящее время им уделяется большое внимание, поскольку особенности строения и состава биополимеров помогают идентифицировать виды даже на молекулярном уровне и устанавливать степень их родства.
  4. Экологический — различие видов по их принадлежности к определенным экосистемам и экологическим нишам, которые они занимают. Однако многие неродственные виды занимают сходные экологические ниши, поэтому данный критерий может быть использован для выделения вида только в совокупности с другими признаками.
  5. Географический — существование популяции каждого вида в определенной части биосферы — ареале, который отличается от ареалов всех остальных видов. В связи с тем, что у множества видов границы ареалов совпадают, а также имеется ряд видов-космополитов, ареал которых охватывает огромные пространства, географический критерий также не может служить маркерным «видовым» признаком.
  6. Генетический — постоянство признаков хромосомного набора — кариотипа — и нуклеотидного состава ДНК у особей одного вида. В связи с тем, что негомологичные хромосомы не могут конъюгировать во время мейоза, потомство от скрещивания особей разных видов с неодинаковым набором хромосом либо не появляется вовсе, либо не плодовито. Это создает репродуктивную изоляцию вида, поддерживает его целостность и обеспечивает реальность существования в природе. Данное правило может нарушаться в случае скрещивания близких по происхождению видов с одинаковым кариотипом или возникновения различных мутаций, однако исключение лишь подтверждает общее правило, и виды следует рассматривать как устойчивые генетические системы. Генетический критерий является основным в системе критериев вида, но также не исчерпывающим.

При всей сложности системы критериев вид нельзя представить как группу абсолютно идентичных по всем параметрам организмов, то есть клонов. Наоборот, для многих видов характерно значительное разнообразие даже внешних признаков, как, например, для одних популяций божьих коровок характерно преобладание в окраске красного цвета, а для других — черного.

Популяция — структурная единица вида и элементарная единица эволюции

Трудно представить, чтобы в реальности особи одного вида были равномерно распределены по земной поверхности в пределах ареала, поскольку, например, лягушка озерная обитает в основном в достаточно редких стоячих пресных водоемах, и вряд ли ее можно встретить на полях и в лесах. Виды в природе чаще всего распадаются на отдельные группы, в зависимости от подходящих по совокупности условий местам обитания — популяции.

Популяция — группа особей одного вида, занимающих часть его ареала, свободно скрещивающихся между собой и относительно обособленных от других совокупностей особей того же вида в течение более или менее длительного времени.

Популяции могут быть разделены не только пространственно, они могут обитать даже на одной территории, но иметь различия в пищевых предпочтениях, сроках размножения и т. д..

Таким образом, вид — это совокупность популяций особей, обладающих рядом общих морфологических, физиологических, биохимических признаков и типов взаимоотношений с окружающей средой, населяющих определенный ареал, а также способных скрещиваться между собой с образованием плодовитого потомства, но почти или совсем не скрещивающихся с другими группами особей того же вида.

Внутри видов с большими ареалами, охватывающими территории с разными условиями жизни, иногда различают и подвиды — большие популяции или группы соседних популяций, имеющих стойкие морфологические отличия от других популяций.

Популяции разбросаны по земной поверхности не случайным образом, они привязаны к конкретным ее участкам. Совокупность всех факторов неживой природы, необходимых для проживания особей данного вида, называется местообитанием. Однако только этих факторов может быть недостаточно для занятия этого участка популяцией, поскольку она должна быть еще вовлечена в тесное взаимодействие с популяциями других видов, то есть занять определенное место в сообществе живых организмов — экологическую нишу. Так, австралийский сумчатый медведь коала при всех прочих равных условиях не может существовать без своего основного источника питания — эвкалипта.

Образующие неразрывное единство в одних и тех же местообитаниях популяции различных видов обыкновенно обеспечивают более или менее замкнутый круговорот веществ и являются элементарными экологическими системами (экосистемами) — биогеоценозами.

При всей своей требовательности к условиям окружающей среды популяции одного вида неоднородны по занимаемой площади, численности, плотности и пространственному размещению особей, часто образующих более мелкие группы (семьи, стаи, стада и др.), полу, возрасту, генофонду и т. д., поэтому различают их размерную, возрастную, половую, пространственную, генетическую, этологическую и другие структуры, а также динамику.

Важными характирестиками популяции являются генофонд — совокупность генов, характерных для особей данной популяции или вида, а также частоты определенных аллелей и генотипов. Разные популяции одного и того же вида изначально имеют неодинаковый генофонд, так как новые территории осваивают особи со случайными, а не специально подобранными генами. Под действием внутренних и внешних факторов генофонд подвергается еще более существенным изменениям: обогащается за счет возникновения мутаций и нового сочетания признаков и обедняется в результате выпадения отдельных аллелей при гибели или миграции некоторого числа особей.

Новые признаки и их сочетания могут быть полезными, нейтральными или вредными, поэтому в популяции выживают и успешно размножаются только приспособленные к данным условиям окружающей среды особи. Однако в двух различных точках земной поверхности условия окружающей среды никогда не бывают полностью идентичными, поэтому и направление изменений даже в двух соседних популяциях может быть совершенно противоположным или они будут протекать с различной скоростью. Результатом изменений генофонда является расхождение популяций по морфологическим, физиологическим, биохимическим и другим признакам. Если популяции при этом еще и изолированы друг от друга, то они могут давать начало новым видам.

Так, возникновение каких-либо препятствий в скрещивании особей различных популяций одного вида, например, вследствие образования горных массивов, изменения русел рек, различий в сроках размножения и т. д., приводит к тому, что популяции постепенно приобретают все больше различий и, в конце концов, становятся различными видами. Некоторое время на границах этих популяций происходит скрещивание особей и возникают гибриды, однако со временем и эти контакты исчезают, т. е. популяции из открытых генетических систем становятся закрытыми.

Несмотря на то, что действию факторов окружающей среды подвергаются в первую очередь отдельные особи, изменение генетического состава у единичного организма является незначительным и проявится в лучшем случае только у его потомков. Подвиды, виды и более крупные таксоны также не подходят на роль элементарных единиц эволюции, поскольку они не отличаются морфологическим, физиологическим, биохимическим, экологическим, географическим и генетическим единством, тогда как популяции как наименьшие структурные единицы вида, накапливающие разнообразие случайных изменений, худшие из которых будут отсеяны, соответствуют этому условию и являются элементарными единицами эволюции.

Микроэволюция

Изменение генетической структуры популяций не всегда приводит к образованию нового вида, а может лишь улучшать приспособление популяции к конкретным условиям среды, однако виды не являются вечными и неизменными — они способны развиваться. Этот процесс необратимого исторического изменения живого называется эволюцией. Первично эволюционные преобразования происходят внутри вида на уровне популяций. В их основе лежат, прежде всего, мутационный процесс и естественный отбор, приводящие к изменению генофонда популяций и вида в целом, или даже к образованию новых видов. Совокупность этих элементарных эволюционных событий называется микроэволюцией.

Популяции характеризуются огромным генетическим разнообразием, которое часто не проявляется фенотипически. Генетическое разнообразие возникает вследствие спонтанного мутагенеза, который происходит непрерывно. Большинство мутаций неблагоприятны для организма и снижают жизнеспособность популяции в целом, но, если они рецессивны, то могут сохраняться в гетерозиготе в течение продолжительного времени. Некоторые мутации, не имеющие приспособительной ценности в данных условиях существования, способны приобрести такую ценность в будущем или при освоении новых экологических ниш, создавая, таким образом, резерв наследственной изменчивости.

Значительное влияние на микроэволюционные процессы оказывают колебания численности особей в популяциях, миграции и катастрофы, а также изоляция популяций и видов.

Новый вид является промежуточным результатом эволюции, но никак не ее итогом, поскольку на этом микроэволюция не прерывается — она продолжается далее. Возникающие новые виды в случае удачного сочетания признаков заселяют новые местообитания, и, в свою очередь, дают начало новым видам. Такие группы близкородственных видов объединяются в роды, семейства и т. д. Эволюционные процессы, происходящие в надвидовых группах, называются уже макроэволюцией. В отличие от макроэволюции, микроэволюция протекает в гораздо более сжатые сроки, тогда как первой требуются десятки и сотни тысяч и миллионов лет, как, например, эволюция человека.

В результате микроэволюции формируется все многообразие видов живых организмов, когдалибо существовавших и ныне живущих на Земле.

Вместе с тем эволюция необратима, и уже исчезнувшие виды никогда не возникают вновь. Появляющиеся виды закрепляют все достигнутое в процессе эволюции, однако это не гарантирует того, что в будущем не появятся новые виды, которые будут иметь более совершенные приспособления к условиям окружающей среды.

Образование новых видов

В широком смысле под образованием новых видов понимается не только отщепление от основного ствола вида нового или распад материнского вида на несколько дочерних, а и общее развитие вида как целостной системы, приводящее к существенным изменениям его морфоструктурной организации. Однако чаще все же видообразование рассматривают как процесс формирования новых видов посредством разветвления «родословного древа» вида.

Принципиальное решение проблемы видообразования было предложено Ч. Дарвином. Согласно его теории расселение особей одного вида приводит к образованию популяций, которые вследствие различий условий окружающей среды вынуждены адаптироваться к ним. Это, в свою очередь, влечет за собой обострение внутривидовой борьбы за существование, направляемой естественным отбором. В настоящее время считается, что борьба за существование вовсе не является обязательным фактором видообразования, наоборот, давление отбора в ряде популяций может снижаться. Различие условий существования способствует возникновению неодинаковых приспособительных изменений в популяциях вида, следствием которого является расхождение признаков и свойств популяций — дивергенция.

Однако накопления различий, даже на генетическом уровне, отнюдь не достаточно для появления нового вида. До тех пор, пока различающиеся по каким-либо признакам популяции не только контактируют, но и способны к скрещиванию с образованием плодовитого потомства, они относятся к одному виду. Лишь невозможность перетока генов из одной группы особей в другую, даже в случае разрушения разделяющих их преград, т. е. скрещивания, означает завершение сложнейшего эволюционного процесса формирования нового вида.

Видообразование является продолжением микроэволюционных процессов. Существует точка зрения, что видообразование не может быть сведено к микроэволюции, оно представляет качественный этап эволюции и осуществляется благодаря другим механизмам.

Способы видообразования

Выделяют два основных способа видообразования: аллопатрическое и симпатрическое.

Аллопатрическое, или географическое видообразование является следствием пространственного разделения популяций физическими преградами (горные хребты, моря и реки) вследствие их возникновения или расселения в новые места обитания (географическая изоляция). Поскольку в данном случае генофонд отделившейся популяции существенно отличается от материнской, да и условия в месте ее обитания не будут совпадать с исходными, со временем это приведет к дивергенции и формированию нового вида. Ярким примером географического видообразования является обнаруженное Ч. Дарвином во время путешествия на корабле «Бигль» разнообразие видов вьюрков на Галапагосских островах вблизи побережья Эквадора. По-видимому, отдельные особи единственного обитающего на южноамериканском континенте вьюрка каким-то образом попали на острова, и, вследствие различия условий (в первую очередь доступности пищи) и географической изоляции, они постепенно эволюционировали, образовав группу родственных видов.

В основе симпатрического, или биологического видообразования лежит какая-либо из форм репродуктивной изоляции, при этом новые виды возникают внутри ареала исходного вида. Обязательным условием симпатрического видообразования является быстрая изоляция образовавшихся форм. Это более быстрый процесс, чем аллопатрическое видообразование, а новые формы похожи на исходные предковые.

Симпатрическое видообразование может быть вызвано быстрыми изменениями хромосомного набора (полиплоидизация) или хромосомными перестройками. Иногда новые виды возникают вследствие гибридизации двух исходных видов, как, например, у домашней сливы, являющейся гибридом терна и алычи. В некоторых случаях симпатрическое видообразование связано с разделением экологических ниш у популяций одного вида в пределах единого ареала или сезонной изоляции — расхождения сроков репродукции у растений (разные виды сосны в Калифорнии пылят в феврале и апреле) и сроков размножения у животных.

Из всего многообразия вновь возникающих видов только немногие, наиболее приспособленные, могут существовать длительное время и дать начало новым видам. Причины гибели большинства видов до сих пор неизвестны, скорее всего это обусловлено резкими изменениями климата, геологическими процессами и вытеснением их более приспособленными организмами. В настоящее время одной из причин гибели значительного числа видов является человек, который истребляет наиболее крупных животных и самые красивые растения, и если в XVII веке этот процесс только начался истреблением последнего тура, то в XXI веке ежечасно исчезает более 10 видов.

Сохранение многообразия видов как основа устойчивости биосферы

Несмотря на то, что на планете, по разным оценкам, обитает 5–10 млн еще не описанных видов организмов, о существовании большинства из них мы никогда не узнаем, поскольку ежечасно с лица Земли исчезает около 50 видов. Исчезновение живых организмов в настоящее время совсем не обязательно связано с их физическим истреблением, чаще это обусловлено разрушением в результате человеческой деятельности их природных мест обитания. Гибель отдельного вида вряд ли способна привести к фатальным последствиям для биосферы, однако уже давно установлено, что вымирание одного вида растений влечет за собой гибель 10–12 видов животных, а это уже представляет угрозу как для существования отдельных биогеоценозов, так и для глобальной экосистемы в целом.

Накопленные за предыдущие десятилетия печальные факты вынудили Международный союз охраны природы и природных ресурсов (МСОП) начать в 1949 году сбор информации о редких и находящихся под угрозой исчезновения видах растений и животных. В 1966 году МСОП издал первую «Красную книгу фактов».

Красная книга — это официальный документ, содержащий регулярно обновляемые данные о состоянии и распространении редких и находящихся под угрозой исчезновения видов растений, животных и грибов.

В этом документе принята пятиступенчатая шкала статуса охраняемого вида, причем к первой ступени охраны относят виды, спасение которых невозможно без осуществления специальных мероприятий, а к пятой — восстановленные виды, состояние которых благодаря принятым мерам не вызывает опасений, но они еще не подлежат промышленному использованию. Разработка такой шкалы позволяет направить первоочередные усилия в области охраны именно на самые редкие виды, такие как амурские тигры.

Помимо международного варианта Красной книги, существуют также национальные и региональные ее варианты. В СССР Красная книга была учреждена в 1974 году, а в Российской Федерации порядок ее ведения регламентируется Федеральными законами «Об охране окружающей среды», «О животном мире» и Постановлением Правительства РФ «О Красной книге Российской Федерации». Сегодня в Красную книгу РФ занесено 610 видов растений, 247 видов животных, 42 вида лишайников и 24 вида грибов. Популяции некоторых из них, в свое время оказавшиеся под угрозой исчезновения (бобр европейский, зубр), уже довольно успешно восстановлены.

Под охрану в России взяты следующие виды животных: русская выхухоль, тарбаган (монгольский сурок), белый медведь, кавказская европейская норка, калан, манул, амурский тигр, леопард, снежный барс, сивуч, морж, тюлени, дельфины, киты, лошадь Пржевальского, кулан, розовый пеликан, фламинго обыкновенный, аист черный, лебедь малый, орел степной, беркут, журавль черный, стерх, дрофа, филин, чайка белая, черепаха средиземноморская, полоз японский, гюрза, жаба камышовая, минога каспийская, все виды осетровых рыб, лосось озерный, жук-олень, шмель необыкновенный, аполлон обыкновенный, рак-богомол, жемчужница обыкновенная и др.

К растениям Красной книги РФ относятся 7 видов подснежников, некоторые виды полыни, женьшень настоящий, 7 видов колокольчиков, дуб зубчатый, пролеска пролесковидная, 11 видов касатиков, рябчик русский, тюльпан Шренка, лотос орехоносный, башмачок венерин настоящий, пион тонколистный, ковыль перистый, первоцвет Юлии, прострел (сон-трава) луговой, красавка белладонна, сосна пицундская, тис ягодный, щитовник китайский, полушник озерный, сфагнум мягкий, филлофора курчавая, хара нитевидная и др.

Редкие грибы представлены трюфелем летним, или русским черным трюфелем, трутовиком лакированным и др.

Охрана редких видов в большинстве случаев связана с запретом их уничтожения, сохранением их самих в искусственно созданной среде обитания (зоопарках), охране их местообитаний и созданием низкотемпературных генетических банков.

Наиболее эффективной мерой охраны редких видов является сохранение их местообитаний, которое достигается организацией сети особо охраняемых заповедных территорий, имеющих, в соответствии с Федеральным законом «Об особо охраняемых природных территориях» (1995), международное, федеральное, региональное или местное значение. К ним относятся государственные природные заповедники, национальные парки, природные парки, государственные природные заказники, памятники природы, дендрологические парки, ботанические сады и др.

Наиболее эффективной мерой охраны редких видов является сохранение их местообитаний, которое достигается организацией сети особо охраняемых заповедных территорий, имеющих, в соответствии с Федеральным законом «Об особо охраняемых природных территориях» (1995), международное, федеральное, региональное или местное значение. К ним относятся государственные природные заповедники, национальные парки, природные парки, государственные природные заказники, памятники природы, дендрологические парки, ботанические сады и др.

Составим твой персональный план подготовки к ЕГЭ

Хочу!