Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Экология: биосфера

Разбор сложных заданий в тг-канале:

Биосфера — глобальная экосистема. Учение В. И. Вернадского о биосфере. Живое вещество, его функции. Особенности распределения биомассы на Земле. Биологический круговорот и превращение энергии в биосфере, роль в нем организмов разных царств. Эволюция биосферы

Биосфера — глобальная экосистема

Биосфера — область существования и жизнедеятельности ныне живущих организмов, которая пронизывает нижние слои атмосферы, всю гидросферу и верхнюю часть литосферы.

Помимо среды обитания, в понятие биосферы включается и вся совокупность живых организмов, населяющих ее и обеспечивающих ее функционирование. Биосферу можно рассматривать и как многоуровневую систему элементарных экосистем — биогеоценозов.

Распространение жизни в географических оболочках Земли зависит от ряда факторов. Так, в атмосфере нарастание силы земного тяготения по мере приближения к Земле и ослабление космического излучения озоновым экраном обусловливает наличие условий, пригодных для жизни, в пределах 20 км над уровнем моря. В гидросфере живые существа обнаружены до глубин 11 км и более (Марианская впадина). В литосфере же они проникают на глубину 5–6 км (в среднем до 2–3 км).

Способность биосферы как открытой системы, зависящей от поступления энергии извне, обеспечивать улавливание и прохождение потока энергии, а также круговорот веществ на планете делает ее глобальной экосистемой.

Большие круговороты веществ на уровне биосферы, являющиеся совокупностью малых круговоротов и представляющие собой совокупность путей перемещения веществ через живые организмы и среду их обитания, называются биогеохимическими циклами. Биогеохимические циклы гораздо более замкнуты, нежели малые круговороты на уровне биогеоценозов. Неполная замкнутость биогеохимических циклов (95–98 %) сыграла огромную роль в накоплении биогенных элементов в земной коре.

Стадии различных биогеохимических циклов протекают с неодинаковой скоростью, да и полного повторения каждого цикла добиться невозможно, поскольку вся природа постоянно находится в процессе изменения. Тем не менее все биогеохимические циклы в природе взаимосвязаны и обеспечивают существование жизни.

Биогеохимические циклы напоминают колеса водяной мельницы, которые под действием потока энергии Солнца обеспечивают перемещение, видоизменение и перераспределение энергии и веществ в биосфере. Сам термин «биогеохимический цикл» был введен в начале ХХ века В. И. Вернадским.

«Лопатками» на «колесах» биогеохимических циклов служат различные экологические группы организмов — продуценты, консументы и редуценты, от соотношения которых в биосфере зависит как улавливание солнечной энергии, так и полнота оборота веществ. Для обеспечения устойчивого потока энергии и круговорота веществ в биосфере необходимы не только видовое разнообразие организмов, но и саморегуляция этой глобальной экосистемы благодаря существованию многочисленных прямых и обратных связей.

Термин «биосфера» в значении «зоны жизни» и внешней оболочки Земли впервые был употреблен Ж. Б. Ламарком в 1802 году, однако его трактовку, близкую к современной, предложил в 1875 году австрийский ученый Э. Зюсс.

Учение В. И. Вернадского о биосфере и ноосфере

Разработка учения о биосфере как сложной многокомпонентной планетарной системе связанных между собой значительных биологических комплексов, а также химических и геологических процессов, происходящих на Земле, — заслуга великого русского ученого В. И. Вернадского (1864–1945). В отличие от других сфер Земли, в пределах биосферы мощнейшим геологическим фактором, преобразующим глобальную экосистему, выступают живые организмы, обеспечивающие направленный поток энергии и функционирование биогеохимических циклов.

Согласно теории В. И. Вернадского, биосфера состоит из четырех компонентов: живого, биогенного, биокосного и косного веществ.

Живое вещество является совокупностью ныне живущих организмов.

Биогенное вещество представляет собой разнообразные органические остатки, в том числе и не полностью разложившиеся (детрит, торф, уголь, нефть и газ биогенного происхождения).

Биокосное вещество — это уже разнообразные смеси биогенных веществ с минеральными породами абиогенного происхождения (почва, илы, природные воды, газо- и нефтеносные сланцы, битуминозные пески, часть осадочных карбонатов).

Косное вещество представлено различными абиотическими компонентами, не затронутыми прямым биогеохимическим воздействием организмов (горные породы, минералы, осадки и др.).

Несмотря на то, что человечество является частью биосферы, в последние два века оно стало не менее мощным геологическим фактором, нежели все остальное живое вещество. В связи с этим французский философ Э. Леруа в 1927 году ввел термин «ноосфера» в значении уже существующего «мыслящего пласта». Однако, согласно учению о ноосфере, также разработанному В. И. Вернадским, ноосфера — это высший этап развития земной природы, результата совместной эволюции природы и общества, направляемой человеком; будущее биосферы, когда она, благодаря разумной деятельности и могуществу человека, приобретет новую функцию — функцию гармоничной стабилизации условий жизни на планете. Согласно В. И. Вернадскому, главная цель в построении ноосферы заключается в неизменности того типа биосферы, в которой возник и может существовать человек как вид, сохраняя свое здоровье и образ жизни.

Эпохе ноосферы должна предшествовать глубокая социально-экономическая реорганизация общества, изменение его ценностной ориентации. К идее ноосферы примыкают соображения В. И. Вернадского о возможности в будущем достижения человеком состояния автотрофности как средства независимости от органических ресурсов.

Несмотря на то, что многие авторы не относят ноосферу в будущее, а считают ее совсем близкой или уже формирующейся, если принять во внимание все еще продолжающуюся разрушительную хозяйственную деятельность человека, то ноосфера является гипотетической стадией развития биосферы, когда в будущем разумная деятельность людей станет главным определяющим фактором ее устойчивого развития.

Гармония антропогенной деятельности человека и природы возможна только при осуществлении контроля численности человечества, ограничении чрезмерных потребностей людей, рационализации использования природных ресурсов, использовании только экологически целесообразных промышленных технологий с максимальной переработкой и применением вторичных материальных и технологических ресурсов, осуществлении глобального экологического мониторинга окружающей природной среды и др.

Живое вещество, его функции

Совокупность всех живых организмов планеты образует биомассу, или живое вещество Земли. Его сухая масса оценивается приблизительно в 1,8–2,5$·$1012 т. Это кажущееся невероятным количество на самом деле составляет всего лишь 0,01 % массы земной коры, однако еще В. И. Вернадский отмечал, что на земной поверхности нет иной химической силы, которая бы действовала более постоянно, а поэтому и более могущественной по своим конечным результатам, чем живое вещество.

И действительно, роль живых организмов в процессах, происходящих на планете, огромна. Хорошо известно, что весь кислород в атмосфере имеет биогенное происхождение, панцири отмерших морских и пресноводных одноклеточных образовали в течение миллионов лет такие осадочные породы, как известняки и диатомит, а без бактерий, грибов, водорослей и почвенных одноклеточных невозможно формирование плодородного слоя почвы. Живое вещество ежегодно воспроизводит около 10 % биомассы, а это 232,5 $×$ 109 т сухого органического вещества, при этом в фотосинтез вовлекается 46 $×$ 109 т углерода, для чего они пропускают через себя 170 $×$ 109 т диоксида углерода и 68 $×$ 109 т воды. Кроме того, в процесс вовлекается 6 $×$ 109 т азота, 2 $×$ 109 т фосфора в год, а также тысячи тонн калия, кальция, магния, серы, железа и других химических элементов.

Изучение деятельности живого вещества позволило В. И. Вернадскому выделить девять выполняемых им биогеохимических функций, в настоящее время к ним относят энергетическую, газовую, окислительно-восстановительную, концентрационную, деструктивную, средообразующую и др.

Энергетическая — связана с обеспечением поглощения солнечной энергии, ее аккумуляции в химических связях органических соединений и передаче по цепям питания и разложения, что, в конечном итоге, позволяет живому веществу выступать движущей силой геологических процессов.

Газовая — заключается в изменении газового состава атмосферы в процессе фотосинтеза и дыхания. Ее осуществляют растения и некоторые бактерии, которые в процессе фотосинтеза выделяют в атмосферу кислород и поглощают углекислый газ, тогда как все без исключения организмы поглощают кислород и выделяют углекислый газ в процессе дыхания. Часть бактерий способна также в процессе жизнедеятельности выделять азот, его оксиды, сероводород и др. Благодаря деятельности живых организмов не только сформировался, но и поддерживается постоянный состав атмосферы.

Окислительно-восстановительная — обусловлена окислением и восстановлением различных элементов в почве и гидросфере живыми организмами, что сопровождается образованием солей, оксидов и свободных соединений, а в конечном итоге известняков, бокситов и различных руд.

Концентрационная — связана с избирательным извлечением и накоплением в живом веществе химических элементов (углерода, водорода, азота и др.). Некоторые из них являются специфическими концентраторами определенных элементов: многие морские водоросли — йода, лютики — лития, ряска — радия, диатомовые водоросли и злаки — кремния, которые затем переходят в залежи полезных ископаемых.

Деструктивная — проявляется в завершении биологического круговорота веществ, поскольку в процессе жизнедеятельности организмов-редуцентов происходит разрушение (деструкция) отмерших остатков и продуктов жизнедеятельности до неорганических веществ, которые могут быть вновь вовлечены в биогенную миграцию атомов.

Средообразующая — обусловлена преобразованием состава окружающей среды в процессе жизнедеятельности биомассы, например, формированием состава атмосферы, накоплением солей в гидросфере, почвообразованием и регуляцией климатических изменений.

Особенности распределения биомассы на Земле

Несмотря на то, что живые организмы встречаются в биосфере повсеместно, как уже упоминалось выше, их распределение в пространстве является отнюдь не равномерным: подавляющая часть жизни сосредоточена в основном на суше, тогда как биомасса океана составляет около 0,13 %, не говоря уже об атмосфере.

Более 99 % биомассы организмов суши составляют продуценты (в основном растения), тогда как на долю консументов и редуцентов приходится менее 1 % (животные и микроорганизмы соответственно). Продуценты суши, как по систематической принадлежности, так и по биомассе, в большинстве своем относятся к высшим растениям, тогда как в океане это в основном мелкие одноклеточные водоросли. Однако и на суше они встречаются не равномерно: наибольшие видовое разнообразие, биомасса и продуктивность характерны для тропических влажных лесов и болот, тогда как пустыни практически безжизненны.

В океане наблюдается иная картина: на долю растений приходится около 6 %, а животные, бактерии и грибы составляют свыше 93 %. Такая пропорция продуцентов, консументов и редуцентов обусловливает и низкую продуктивность открытого океана, просторы которого можно считать полупустынными. Тем не менее, именно океан является основным поставщиком первичной продукции на планете благодаря его огромной протяженности и тому, что значительная часть энергии, запасенной продуцентами в виде химических связей органических веществ, не расходуется на процессы жизнедеятельности, а оседает на дно.

Биологический круговорот и превращение энергии в биосфере, роль в нем организмов разных царств

Энергия и вещества, поступающие извне в экосистемы в процессе их существования, подвергаются многочисленным изменениям и переходят из одной формы в другую. Поток энергии через экосистему не может быть замкнутым, поскольку солнечная энергия, хотя и переходит в энергию химических связей благодаря деятельности продуцентов, однако большая ее часть рассеивается в процессе жизнедеятельности отдельных компонентов биогеоценозов, и лишь незначительная доля депонируется в виде залежей полезных ископаемых (нефть, газ, торф). Энергия (солнечная и высвобождаемая в геологических процессах) является движущей силой круговорота веществ в отдельных биогеоценозах и биосфере в целом.

В течение коротких промежутков времени — от одного до нескольких лет — можно наблюдать почти циклические процессы превращений веществ и отдельных химических элементов при получении ресурсов и переработке отходов в экосистемах, тогда как в более длительной перспективе обнаруживается, что данные процессы замкнуты не полностью, поскольку они и депонируются в геосферах Земли, и выносятся в другие биогеоценозы ветрами, ливнями и т. д. Однако эти малые круговороты веществ (на уровне биогеоценоза) являются составляющими больших круговоротов веществ в экосистемах более высокого уровня, или биогеохимических циклов.

В круговороте веществ и энергии в биогеоценозах ведущую роль играют живые организмы, поскольку одни из них (продуценты) улавливают энергию Солнца и фиксируют углерод, а также азот, серу и фосфор в виде органических соединений, а другие, наоборот, используют их (консументы) и постепенно минерализуют (редуценты).

В экосистемах постоянно осуществляются круговороты углерода, азота, водорода, кислорода, серы, фосфора и других химических элементов, а также круговороты веществ, например, воды.

Круговорот углерода. Углерод является одним из важнейших биогенных элементов, который фиксируется растениями в процессе фотосинтеза в виде органических соединений, используемых консументами. В процессе дыхания большая часть органических соединений расщепляется с образованием углекислого газа, а органические остатки разлагаются и минерализуются организмами- редуцентами. В результате этих двух процессов большая часть углекислого газа возвращается обратно в атмосферу.

Часть углерода в настоящее время депонируется в виде неразложившихся органических остатков, формирующих плодородный слой почвы, а запасенный растениями, жившими миллионы лет назад, образовал залежи таких полезных ископаемых, как каменный и бурый уголь, нефть, природный газ, торф и др.

В водных экосистемах углекислый газ связывается в виде карбонат- и гидрокарбонатанионов, и может образовывать нерастворимый карбонат кальция, который входит в состав скелетов многих простейших животных и кишечнополостных. Скелеты отмерших животных образуют осадочные породы (мел, известняки) и надолго исключаются из круговорота, однако в процессе горообразования они выносятся на поверхность, и, разрушаясь под действием биотических факторов и в результате деятельности живых организмов, вновь вовлекаются в него.

Хозяйственная деятельность человека в значительной степени влияет на круговорот углерода в биогеоценозах, в основном вследствие использования невозобновляемых энергетических ресурсов — нефти и газа.

Круговорот азота. Как и углерод, азот является биогенным элементом, который входит в состав белков, нуклеиновых кислот, АТФ, хитина, ряда витаминов и др. В атмосфере азот находится в молекулярной форме (79 % атмосферы), однако он химически инертен и не может быть усвоен непосредственно растениями. Большая часть азота фиксируется свободноживущими и симбиотическими азотфиксирующими бактериями (в том числе цианобактериями), преобразующими его в нитраты. Некоторая часть азота поступает из атмосферы в виде оксида азота (IV), образующегося во время грозы.

Нитраты поглощаются растениями и включаются ими в состав органических соединений. Белки растений служат основой азотного питания животных, однако азотистые соединения постоянно выделяются последними в процессе жизнедеятельности, а также в процессе разложения растительных и животных остатков бактериями и грибами. Образующийся аммиак частично используется редуцентами на построение собственного тела, другая же его часть преобразуется нитрифицирующими бактериями в нитраты, вновь используемые растениями или денитрифицирующими бактериями, возвращающими его в атмосферу. Часть азота, как и углерода, на длительное время исключается из оборота, оседая в глубоководных отложениях.

Круговорот азота претерпел значительные изменения в связи с использованием человеком азотных удобрений, а также других азотистых соединений в различных отраслях промышленности, вследствие чего значительные количества азота попадают не только на поля, но и в воздух, и в водные экосистемы.

Круговорот серы. Сера как биогенный элемент входит в состав некоторых аминокислот и целого ряда других важнейших органических соединений. Большая часть серы депонирована в почве и морских осадочных породах в виде сульфидов и сульфатов. Микроорганизмы переводят сульфиды в доступную для растений форму — сульфаты. Остатки растений и животных перерабатываются редуцентами и обеспечивают возврат серы в круговорот.

На современном этапе выброс соединений серы существенно возрос в результате хозяйственной деятельности человека (сжигание каменного угля и газа на тепловых электростанциях, выхлопные газы автомобилей), что приводит к образованию серной кислоты и кислотным дождям, вызывающим гибель растительности.

Круговорот фосфора. Фосфор сосредоточен в отложениях, образовавшихся в прошлые геологические эпохи, поскольку многие фосфаты нерастворимы. Постепенно фосфор все же вымывается из них и попадает в экосистемы. Растения используют только часть этого фосфора, тогда как большая его часть уносится в водоемы и вновь откладывается в виде осадочных пород.

Деятельность человека внесла существенные коррективы в круговорот этого химического элемента в связи с добычей морепродуктов и использованием огромного количества фосфорных удобре ний, значительная часть которых ежегодно смывается с полей.

Нерациональная эксплуатация природных запасов фосфора ведет, например, и к географическим изменениям. Так, маленькое островное государство Науру в юго-западной части Тихого океана, существующее в основном за счет добычи фосфоритов, вскоре исчезнет с лица Земли, поскольку запасы этих полезных ископаемых, накапливавшихся в течение сотен тысяч лет благодаря экскрементам перелетных птиц, почти истощены.

Круговорот воды (гидрологический цикл). Совокупные запасы воды на планете составляют около 1,5 млрд м3, причем большая их часть находится в водоемах (особенно соленых), тогда как атмосфера достаточно бедна ею. Вода испаряется и воздушными течениями переносится на значительные расстояния. На поверхность суши вода выпадает в виде осадков, при этом она используется не только живыми существами, но и способствует разрушению горных пород, делает их пригодными для жизни растений и микроорганизмов, размывает верхний почвенный слой и возвращается вместе с растворенными в ней химическими соединениями и взвешенными органическими частицами в водоемы. Гидрологический цикл занимает около 1 года. Круговорот воды между океаном и сушей является важнейшим звеном в поддержании жизни на Земле, поскольку не только обеспечивает потребность организмов в воде, но и привносит в водные экосистемы минеральные и органические вещества, захватываемые на суше в процессе разрушения литосферы.

В настоящее время человек является мощным геологическим фактором, использующим в своей деятельности почти все элементы, даже те, которые необходимы лишь для техногенной деятельности (уран, плутоний и др.). Это способствует тому, что природные круговороты веществ трансформируются в природно-антропогенные, так как человек не только изымает из оборота определенные элементы, но и ускоряет использование некоторых из них.

Эволюция биосферы

Биосфера, как и любая другая экосистема, не является застывшей, так, в девонском периоде в атмосфере имелось до 30 % кислорода, а в настоящее время — до 21 %, кроме того, за последние 50 лет содержание углекислого газа в ней под влиянием хозяйственной деятельности человека возросло на 10 %. Само формирование и историческое развитие биосферы тесно связаны с возникновением и эволюцией жизни на планете.

На первом этапе эволюции биосферы ведущую роль в ней играли физико-химические процессы, связанные с образованием Земли из протопланетного облака, ее разогревом, миграцией атомов и разделением литосферы на мантию и ядро, возникновением гидросферы, а также формированием вторичной атмосферы из метана, углекислого газа, водяных паров и аммиака, что создавало предпосылки для абиогенного возникновения жизни.

В дальнейшем именно живое вещество оказало огромное влияние на эволюцию биосферы, которое заключалось в изменении состава атмосферы и его поддержании (возникновении кислорода, снижении концентрации углекислого газа, метана и др.), в регуляции состава морских и пресных вод, во влиянии на климат и плодородие почв, а также на процессы формирования осадочных и разрушения горных пород. Это было обусловлено возникновением уже на первых этапах развития жизни автотрофных и гетеротрофных организмов, обеспечивших круговорот веществ и поток энергии на планете. Несмотря на то, что естественные геологические и климатические изменения на планете также продолжают играть немаловажную роль в процессах, происходящих на планете, именно живое вещество выступает ведущим геохимическим фактором.

Эволюция органического мира неизбежно сопровождалась возникновением одних, более приспособленных к среде обитания систематических групп организмов, и вымиранием других, однако при этом в биосфере в целом поддерживается приблизительно одинаковое соотношение продуцентов, консументов и редуцентов, обеспечивающих устойчивое развитие биосферы.

На современном этапе эволюции биосферы огромную роль, сравнимую с деятельностью живого вещества, играет третий фактор — человеческое общество, хозяйственная деятельность которого уже привела к нарушению экологического равновесия и грозит полным разрушением биосферы.

Глобальные изменения в биосфере, вызванные деятельностью человека (нарушение озонового экрана, кислотные дожди, парниковый эффект и др.). Проблемы устойчивого развития биосферы. Правила поведения в природной среде

Глобальные изменения в биосфере, вызванные деятельностью человека (нарушение озонового экрана, кислотные дожди, парниковый эффект и др.)

Эволюция человека и развитие человеческого общества достаточно длительное время не оказывали существенного влияния на биосферу, однако уже 20–30 тыс. лет назад началось интенсивное истребление крупных травоядных животных, а 10–12 тыс. лет назад — сведение лесов, обусловленное подсечной системой земледелия. Впоследствии в некоторых районах планеты вместе с изменениями климата это привело к эрозии почв и опустыниванию. Тем не менее только в последние два столетия резкий рост населения и качественный скачок в развитии науки и производства привели к сильнейшей нагрузке на природу, возникновению антропоценозов.

Хозяйственная деятельность человека, ставившая перед собой благую цель удовлетворить его самые основные потребности в пище и более или менее комфортной среде обитания, первоначально затрагивала лишь поверхность суши (вырубка лесов, распашка земель, прокладка дорог), а затем распространилась и вглубь литосферы (добыча полезных ископаемых), затронула атмосферу (сжигание топлива, выбросы промышленных предприятий и автомобилей) и гидросферу (бытовые и промышленные стоки, осушение болот, сооружение плотин). Негативные последствия этой деятельности длительное время нивелировались благодаря буферным свойствам биосферы, однако возрастающая антропогенная нагрузка, связанная с загрязнением воздуха, воды и земли вызвала, возможно, уже необратимые изменения в соответствующих оболочках планеты. Несмотря на то, что загрязнение происходит во многих местах по всему земному шару, их последствия не остаются локальными, а суммируются и приобретают глобальные масштабы.

Парниковый эффект. Ускорение минерализации гумуса почв на распаханных территориях, выбросы в атмосферу продуктов сгорания топлива, в особенности углекислого газа и метана, а также широко применяемого в холодильниках, кондиционерах и распылителях фреона привели не только к их накоплению, но и к задержке ими инфракрасного излучения земной поверхности, ведущей к разогреву биосферы. Считается, что наблюдаемый при этом парниковый эффект является основной причиной глобального потепления, которое сопровождается увеличением числа жарких дней в году, снижением количества осадков и засухами в основных сельскохозяйственных районах, таянием ледников и подъемом вод Мирового океана, а также различными катаклизмами, в частности ураганами, штормами и т. д. Ряд ученых объясняет глобальное потепление в большей степени цикличностью процессов изменения температуры на планете, т. е. тем, что мы живем в настоящее время в межледниковый период.

Нарушение озонового экрана. Фреон и оксид азота (II) считают также основными факторами ослабления озонового слоя и возникновения «озоновых дыр» над Антарктидой, Арктикой и Скандинавией. Несмотря на то, что озон образуется в атмосфере постоянно под действием электрических разрядов высокой мощности, и мы ощущаем его запах после грозы, озоновый экран формировался в течение миллионов лет, и только завершение этого процесса серьезно уменьшило поступление губительного для всего живого ультрафиолетового излучения на планету и позволило организмам выйти на сушу. Нарушение озонового слоя в настоящее время считается главной причиной тревожной статистики заболеваемости раком кожи во многих странах мира, и поэтому повсеместно ставится вопрос о вреде длительного воздействия солнечных лучей и соляриев.

Решить две вышеупомянутые насущные проблемы человечества призван ряд международных договоров, в том числе Монреальский (1987) и Киотский (1997) протоколы, предусматривающие ограничение использования фреонов, а также выбросов парниковых газов в атмосферу.

Кислотные дожди. К середине 70-х годов ХХ века в Скандинавии, Великобритании, а также в ряде районов Северной Америки было обнаружено, что дождевая вода вместо нейтральной реакции имеет кислую (рН < 7,0). В первую очередь выпадение кислотных дождей стало причиной нарушений в пресноводных экосистемах, где начала исчезать не только рыба, но и лягушки, тритоны и другие животные. Несмотря на то, что последствия таких осадков для растительности установить трудно, считается, что они являются причиной деградации лесов, а также разъедания строительных конструкций, эрозии почв и т. д. Причиной выпадения кислотных дождей является загрязнение воздушной среды оксидами серы и азота, которые реагируют с атмосферной влагой с образованием серной и азотной кислот. Оксиды серы и азота попадают в атмосферу в результате сгорания топлива, содержащего даже небольшие количества этих химических элементов.

Смог. Выброс различных газов и твердых частичек в атмосферу приводит также к образованию смога, характерного в настоящее время для промышленных районов государств (например, Китая), переживающих экономический бум. Смог является причиной роста числа заболеваний дыхательной системы.

Загрязнение водоемов. Интенсивная эксплуатация водных ресурсов связана не только с выловом рыбы, добычей морепродуктов и культивированием жемчуга, поскольку человечество нуждается в питьевой и технической воде. Изменение водного баланса на планете вследствие вырубки лесов, строительства плотин и осушения болот, а также загрязнение вод в первую очередь коснулось континентальных пресных водоемов, однако последствия этой деятельности ощущаются и в морях, как, например, в случае с пестицидом ДДТ, который применялся на полях, но был обнаружен и в тканях рыб и млекопитающих Северного Ледовитого океана. Загрязнение рек и стоячих водоемов бытовыми и промышленными стоками, в том числе радиоактивными отходами, привело к серьезному нарушению видового разнообразия данных экосистем, однако вовремя принятые в ряде стран меры способствовали их очистке и восстановлению природных популяций. Нерациональное использование подземных вод вызвало в некоторых регионах истощение природных ресурсов и проседание почв на огромных территориях. В настоящее время считается, что в мире более 1 млрд человек не имеет доступа к качественной питьевой воде, и такое положение продолжает усугубляться, поэтому водные ресурсы нуждаются в особой охране.

Сведение лесов. Леса издавна считаются легкими планеты, поскольку в процессе фотосинтеза в них образуется значительная часть атмосферного кислорода. Кроме того, они принимают активное участие в поддержании водного баланса планеты, сохранении почв, видового разнообразия и т. д. Несмотря на это, леса по всей планете продолжают вырубаться с ужасающей скоростью, особенно в тропических регионах, для нужд строительной, мебельной, химической, целлюлознобумажной и других отраслей промышленности. Последствиями такой хищнической эксплуатации природных ресурсов, которые становятся все более заметными в последнее время, являются обмеление рек, наводнения, исчезновение многих видов растений и животных, деградация почв, рост концентрации углекислого газа в атмосфере и изменение климата в целом.

Эрозия почв и опустынивание. Почвенное плодородие, которое интересует человечество в первую очередь, зависит от толщины слоя гумуса, накапливаемого в течение тысячелетий благодаря деятельности миллионов организмов. Наиболее плодородными почвами считаются черноземы, их во время Великой Отечественной войны даже вывозили в Германию с территории нашей страны немецко-фашистские захватчики. Однако в послевоенный период почвенное плодородие начало неуклонно снижаться вследствие эрозии. Эрозией называется разрушение верхнего плодородного слоя почвы вследствие его смывания водами и сноса ветрами. Эрозия, уплотнение почв сельскохозяйственной техникой, засоление, загрязнение, вырубка лесов, интенсивный выпас на пастбищах и другие воздействия ведут к деградации почв, и, в конечном итоге, к опустыниванию, как это произошло в колыбели человеческой цивилизации — Месопотамии и Северной Африке.

Не менее значительными последствиями хозяйственной деятельности человека являются истощение энергетических ресурсов, вымирание видов растений и животных и т. д.

Человек долгое время усиливал власть над природой, развивал технический потенциал, увеличивал эксплуатацию природных ресурсов, однако в дальнейшем этот процесс может привести лишь к катастрофическому разрушению природной среды с последующим снижением качества жизни. Единственно возможным шагом в направлении перехода биосферы в ноосферу является осознание и провозглашение необходимости перехода мирового сообщества на позиции устойчивого развития.

Проблемы устойчивого развития биосферы

В послевоенное время последствия хозяйственной деятельности человечества приобрели настолько угрожающие масштабы, что было доказано: устранение возникших противоречий между антропогенной нагрузкой и буферными возможностями биосферы, а также дальнейшее улучшение качества жизни людей возможны только в рамках стабильного социально-экономического развития, не разрушающего естественный механизм саморегуляции биосферы. Для решения этих проблем был создан целый ряд международных организаций по защите окружающей природной среды, таких как Международный союз по охране природы и природной среды (МСОП), Всемирный фонд охраны дикой природы (WWF), Римский клуб, Международный экологический суд (МЭС), Гринпис, а также было проведено немало представительных конференций. Наиболее значимыми форумами по данной проблематике считаются Конференция ООН по окружающей среде (Стокгольм, 1972) и Конференция ООН по окружающей среде и развитию (Рио-де-Жанейро, 1992). Результатом работы первой из них явилось создание Программы ООН по окружающей среде и развитию (ЮНЕП), а вторая приняла Декларацию РИО по окружающей среде и развитию, Рамочную конвенцию «Об изменении климата», Конвенцию «О биологическом разнообразии» и Программу действий ООН «Повестка дня на ХХІ век». Именно в документах последней встречи выдвинутая ранее в докладе ЮНЕП «Наше общее будущее» (1987) теория устойчивого развития составила концептуальную основу принятых решений.

Устойчивое развитие подразумевает такой тип развития, который позволяет обеспечить стабильный экономический рост на долговременной основе, не приводя при этом к дальнейшей деградации окружающей природной среды.

В узком смысле под устойчивым развитием понимается исключительно оптимизация хозяйственной деятельности человека в биосфере, которая, с одной стороны, удовлетворяла бы потребности человечества, а с другой, не усугубляла бы состояния природной среды.

Более широкая трактовка данного термина связывает устойчивое развитие с коренным пересмотром самих принципов функционирования человеческой цивилизации, в том числе решение продовольственной, экономической и других проблем, и переходу биосферы в качественно новое состояние — ноосферу.

Для решения данных проблем необходимо решить четыре основные задачи современности: сохранение уцелевших и восстановление до уровня естественной продуктивности ряда деградировавших экосистем, рационализация потребления, повсеместное внедрение «экологических» технологий и нормализация численности населения.

Поскольку биосфера, являясь регулятором состояния окружающей среды, представляет собой единую систему, то полноценный переход к устойчивому развитию возможен только в масштабах мирового сообщества при эффективном международном сотрудничестве. Большую роль в этом сыграли, помимо упоминавшихся Конференций ООН, Монреальская встреча (Монреаль, 1987; подписан Монреальский протокол об ограничении выбросов фреона в атмосферу), Общеевропейская конференция министров окружающей среды (София, 1995), Конференция Сторон Рамочной Конвенции ООН по изменению климата (Киото, 1997; подписан Киотский протокол об ограничении тепловых выбросов в атмосферу) и Международный конгресс по устойчивому развитию (Йоханнесбург, 2002). Тем не менее особую роль в данном процессе играет ряд стран, одной из которых является Россия, обладающая большими территориями, фактически не затронутыми хозяйственной деятельностью и являющимися резервом устойчивости биосферы в целом.

Российская Федерация активно подключилась к решению глобальных экологических проблем, что выразилось в принятии ряда основополагающих документов, в том числе Концепции перехода РФ к устойчивому развитию, Государственной стратегии устойчивого развития РФ, Экологической доктрины РФ, Федерального закона «Об охране окружающей среды», которые предусматри вают стабилизацию и коренное улучшение состояния окружающей природной среды за счет внедрения экологически оправданных технологий и методов управления, изменения самой структуры экономики, а также личного и общественного потребления. Большое внимание в этих документах уделяется формированию нового, экологического мышления как у подрастающего поколения, так и у экономически активного населения.

Отдельные успехи в деле защиты окружающей среды уже намечаются. В основном они связаны с природоохранной политикой государств и усилиями международного сообщества, устанавливающими стандарты качества окружающей природной среды и предельно допустимые уровни ее загрязнения, такие как «Евро-2», «Евро-4» и др. Большинство рычагов экологической политики лежит все-таки в экономической плоскости и предусматривает недопущение на рынок товаров и услуг, не отвечающих стандартам, введение штрафных санкций, экологических налогов, повышение цен на энергоносители и т. д. Введение же безвредных для состояния окружающей среды технологий, напротив, сопровождается налоговыми льготами. Поэтому в большинстве стран мира промышленные предприятия устанавливают специальные фильтры для снижения вредных выбросов в атмосферу, очищают сточные воды и пытаются сделать производственные циклы замкнутыми и безотходными. Особое значение в настоящее время уделяется получению энергии из возобновляемых источников путем строительства приливных, ветро- и гелиоэлектростанций, а также внедрению энергосберегающих технологий.

Однако эти усилия не могут быть плодотворными без участия каждого человека в отдельности. Поэтому в развитых странах бережное отношение к природе, которое заключается в сортировке бытового мусора, применении упаковки многоразового использования, передвижении на велосипеде и т. д., является элементом общей культуры.

Оценка глобальных экологических проблем и возможных путей их решения

Деятельность человека к концу ХХ века привела к разрушению более 60 % естественных экосистем суши (при том, что распахано только 10 % территорий), гибнут водные экосистемы, в том числе и морские, что обусловлено нерациональным использованием ресурсов, техногенным загрязнением и глобальным изменением климата. Однако первопричинами такого плачевного состояния биосферы являются демографический взрыв в ряде развивающихся стран и формирование общества потребления в экономически развитых странах.

Дальнейшее промедление в решении экологических проблем уже через 20 лет приведет к повышению температуры на планете на 1–2 􀁱С, вызовет жесткие засухи и затопление на огромных территориях, обречет миллионы людей на смерть от голода и болезней, вызванных в том числе неполноценным питанием, отсутствием качественной питьевой воды и загрязнением природной среды. В конечном итоге, уже в ближайшей перспективе возможно полное исчезновение человека как биологического вида вследствие разрушения его среды обитания.

Искусственно поддерживать функционирование биосферы на необходимом уровне человечеству не удастся, поскольку только живое вещество планеты в состоянии обеспечивать и регулировать этот процесс. Главным условием для восстановления нормальной природной среды обитания является восстановление самого живого вещества, прежде всего за счет сохранения видового разнообразия растений, животных, грибов и бактерий. Однако восстановить ее полностью не удастся, во всяком случае в настоящее время, поскольку на это пришлось бы направить все имеющиеся в распоряжении человечества ресурсы. Поэтому экономически и экологически оправданным уровнем является выделение в качестве заповедных территорий около 1/6 части суши. Если для большинства промышленно развитых стран мира эта задача представляется непосильной, то Россия имеет еще огромный запас в виде 65 % почти не тронутых деятельностью человека территорий.

Правила поведения в природной среде

Учитывая реалии сегодняшнего дня, отдыхая на природе, следует стараться не наносить еще большего вреда экосистемам. Для этого во время движения не стоит съезжать и сходить с уже проложенных маршрутов, чтобы не утрамбовывать почву. Нельзя ломать и срывать бесцельно растения, собирать их семена и плоды, так как это может нарушить процесс воспроизведения растительных сообществ. Разведение костров на природе также возможно только на специально оборудованных площадках во избежание пожаров, которые могут возникнуть даже от брошенной спички или окурка. Ловля и умерщвление насекомых и других животных только из-за того, что они красивы или из спортивного интереса являются недопустимыми, ибо также могут не только влиять на численность популяций, но и оказывать влияние на целостность цепей питания и трофических сетей биогеоценозов. Следует помнить и о том, что даже при гербаризации растений и сборе животных для коллекций учитывается степень редкости этих организмов. В природной среде нельзя также оставлять мусор, мыть машины и сливать машинное масло и горючее, так как это также наносит пусть не мгновенный, но все же большой вред экосистемам.

Только рациональное природопользование может обеспечить сохранность природной среды еще на долгие годы.

Составим твой персональный план подготовки к ЕГЭ

Хочу!