Пружинный и математический маятник

Разбор сложных заданий в тг-канале:

Свободные колебания математического и пружинного маятников

Свободные колебания (или собственные колебания) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинетической) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая называется колебательной системой.

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины, входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О) вследствие действия силы упругости пружины, направленной к положению равновесия.

Другим классическим примером механической колебательной системы является математический маятник. В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия. Силы, действующие между телами колебательной системы, называются внутренними силами. Внешними силами называются силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свободные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

  1. возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;
  2. отсутствие трения в системе.

Динамика свободных колебаний

Колебания тела под действием сил упругости. Уравнение колебательного движения тела под действием силы упругости Fупр может быть получено с учетом второго закона Ньютона (F=ma) и закона Гука (Fупр=kx), где m — масса шарика, а — ускорение, приобретаемое шариком под действием силы упругости, k — коэффициент жесткости пружины, х — смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось Ох). Приравнивая правые части этих уравнений и учитывая, что ускорение а — это вторая производная от координаты х (смещения), получим:

x=kmx

Это дифференциальное уравнение движения тела, колеблющегося под действием силы упругости: вторая производная координаты по времени {ускорение тела) прямо пропорциональна его координате, взятой с противоположным знаком.

Колебания математического маятника. Для получения уравнения колебания математического маятника необходимо разложить силу тяжести Fт=mg на нормальную Fn (направленную вдоль нити) и тангенциальную Fτ (касательную к траектории движения шарика — окружности) составляющие. Нормальная составляющая силы тяжести Fn и сила упругости нити Fупр в сумме сообщают маятнику центростремительное ускорение, не влияющее на величину скорости, а лишь меняющее ее направление, а тангенциальная составляющая Fτ является той силой, которая возвращает шарик в положение равновесия и заставляет его совершать колебательные движения. Используя, как и в предыдущем случае, закон Ньютона для тангенциального ускорения — maτ=Fτ и учитывая, что Fτ=mgsinα, получим:

aτ=gsinα

Знак минус появился потому, что сила и угол отклонения от положения равновесия α имеют противоположные знаки. Для малых углов отклонения sinαα. В свою очередь, α=sl, где s — дуга ОА, l — длина нити. Учитывая, что aτ=s, окончательно получим:

s=gls

Вид уравнения s=gls аналогичен уравнению x=kmx. Только здесь параметрами системы являются длина нити и ускорение свободного падения, а не жесткость пружины и масса шарика; роль координаты играет длина дуги (т. е. пройденный путь, как и в первом случае).

Таким образом, свободные колебания описываются уравнениями одного вида (подчиняются одним и тем же законам) независимо от физической природы сил, вызывающих эти колебания.

Решением уравнений x=kmx и s=gls является функция вида:

x=xmcosω0t(или x=xmsinω0t)

То есть координата тела, совершающего свободные колебания, меняется с течением времени по закону косинуса или синуса, и, следовательно, эти колебания являются гармоническими.

В уравнении x=xmcosω0t хт— амплитуда колебания, ω0 — собственная циклическая (круговая) частота колебаний.

Циклическая частота и период свободных гармонических колебаний определяются свойствами системы. Так, для колебаний тела, прикрепленного к пружине, справедливы соотношения:

ω0=km;T=2πmk

Собственная частота тем больше, чем больше жесткость пружины или меньше масса груза, что вполне подтверждается опытом.

Для математического маятника выполняются равенства:

ω0=gl;T=2πlg

Эта формула была впервые получена и проверена на опыте голландским ученым Гюйгенсом (современником Ньютона).

Период колебаний возрастает с увеличением длины маятника и не зависит от его массы.

Следует особо обратить внимание на то, что гармонические колебания являются строго периодическими (т. к. подчиняются закону синуса или косинуса) и даже для математического маятника, являющегося идеализацией реального (физического) маятника, возможны только при малых углах колебания. Если углы отклонения велики, смещение груза не будет пропорционально углу отклонения (синусу угла) и ускорение не будет пропорционально смещению.

Скорость и ускорение тела, совершающего свободные колебания, также будут совершать гармонические колебания. Беря производную по времени функции x=xmcosω0t, получим выражение для скорости:

x=υ=xm·sinω0t=υmcos(ω0t+π2)

где υm — амплитуда скорости.

Аналогично выражение для ускорения а получим, дифференцируя x=υ=xm·sinω0t=υmcos(ω0t+π2):

a=x=υxmω02cosω0t=am·cos(ω0t+π)

где am — амплитуда ускорения. Таким образом, из полученных уравнений следует, что амплитуда скорости гармонических колебаний пропорциональна частоте, а амплитуда ускорения — квадрату частоты колебания:

υm=ω0xm;am=ω02xm

Бесплатный интенсив по физике

На бесплатном интенсиве ты:
  • 🔥 Получишь мощный старт для дальнейшей подготовки.
  • 🔥 Прокачаешь свою Кинематику.
  • 🔥 Узнаешь все о Линзах в ЕГЭ.
  • 🔥 Будешь решать задачи с дифракционной решеткой на ИЗИ.
  • 🔥 Улучшишь свои резы на 20 вторичных баллов ЕГЭ.

Что тебя ждет?

  • 👉 7 вебинаров (по 1 вебчику в неделю: согласись, не напряжно, да?).
  • 👉 Домашка после каждого веба (без дедлайна, лето все-таки, делай, когда удобно).
  • 👉 Скрипты и конспекты, полезные материалы к каждому занятию.
  • 👉 Личный кабинет Турбо (это супер-мега удобная площадка 🔥).
  • 👉 Тренажёр для отработки заданий (все в том же личном кабинете).
  • 👉 Отдельная беседа с преподавателями и однокурсниками.
  • 👉 Комфортная атмосфера, эффективная подготовка + чувство, что лето проводишь не зря 🔥.

Составим твой персональный план подготовки к ЕГЭ

Хочу!