Пружинный и математический маятник
Свободные колебания математического и пружинного маятников
Свободные колебания (или собственные колебания) — это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинетической) при отсутствии внешних воздействий.
Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.
Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая называется колебательной системой.
Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины, входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О) вследствие действия силы упругости пружины, направленной к положению равновесия.
Другим классическим примером механической колебательной системы является математический маятник. В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия. Силы, действующие между телами колебательной системы, называются внутренними силами. Внешними силами называются силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свободные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.
Условиями возникновения свободных колебаний являются:
- возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;
- отсутствие трения в системе.
Динамика свободных колебаний
Колебания тела под действием сил упругости. Уравнение колебательного движения тела под действием силы упругости может быть получено с учетом второго закона Ньютона () и закона Гука (), где — масса шарика, — ускорение, приобретаемое шариком под действием силы упругости, — коэффициент жесткости пружины, — смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось ). Приравнивая правые части этих уравнений и учитывая, что ускорение — это вторая производная от координаты (смещения), получим:
Это дифференциальное уравнение движения тела, колеблющегося под действием силы упругости: вторая производная координаты по времени {ускорение тела) прямо пропорциональна его координате, взятой с противоположным знаком.
Колебания математического маятника. Для получения уравнения колебания математического маятника необходимо разложить силу тяжести на нормальную (направленную вдоль нити) и тангенциальную (касательную к траектории движения шарика — окружности) составляющие. Нормальная составляющая силы тяжести и сила упругости нити в сумме сообщают маятнику центростремительное ускорение, не влияющее на величину скорости, а лишь меняющее ее направление, а тангенциальная составляющая является той силой, которая возвращает шарик в положение равновесия и заставляет его совершать колебательные движения. Используя, как и в предыдущем случае, закон Ньютона для тангенциального ускорения — и учитывая, что , получим:
Знак минус появился потому, что сила и угол отклонения от положения равновесия имеют противоположные знаки. Для малых углов отклонения . В свою очередь, , где — дуга , — длина нити. Учитывая, что , окончательно получим:
Вид уравнения аналогичен уравнению . Только здесь параметрами системы являются длина нити и ускорение свободного падения, а не жесткость пружины и масса шарика; роль координаты играет длина дуги (т. е. пройденный путь, как и в первом случае).
Таким образом, свободные колебания описываются уравнениями одного вида (подчиняются одним и тем же законам) независимо от физической природы сил, вызывающих эти колебания.
Решением уравнений и является функция вида:
(или )
То есть координата тела, совершающего свободные колебания, меняется с течением времени по закону косинуса или синуса, и, следовательно, эти колебания являются гармоническими.
В уравнении хт— амплитуда колебания, — собственная циклическая (круговая) частота колебаний.
Циклическая частота и период свободных гармонических колебаний определяются свойствами системы. Так, для колебаний тела, прикрепленного к пружине, справедливы соотношения:
Собственная частота тем больше, чем больше жесткость пружины или меньше масса груза, что вполне подтверждается опытом.
Для математического маятника выполняются равенства:
Эта формула была впервые получена и проверена на опыте голландским ученым Гюйгенсом (современником Ньютона).
Период колебаний возрастает с увеличением длины маятника и не зависит от его массы.
Следует особо обратить внимание на то, что гармонические колебания являются строго периодическими (т. к. подчиняются закону синуса или косинуса) и даже для математического маятника, являющегося идеализацией реального (физического) маятника, возможны только при малых углах колебания. Если углы отклонения велики, смещение груза не будет пропорционально углу отклонения (синусу угла) и ускорение не будет пропорционально смещению.
Скорость и ускорение тела, совершающего свободные колебания, также будут совершать гармонические колебания. Беря производную по времени функции , получим выражение для скорости:
где — амплитуда скорости.
Аналогично выражение для ускорения а получим, дифференцируя :
где — амплитуда ускорения. Таким образом, из полученных уравнений следует, что амплитуда скорости гармонических колебаний пропорциональна частоте, а амплитуда ускорения — квадрату частоты колебания:
Бесплатный интенсив по физике
- 🔥 Получишь мощный старт для дальнейшей подготовки.
- 🔥 Прокачаешь свою Кинематику.
- 🔥 Узнаешь все о Линзах в ЕГЭ.
- 🔥 Будешь решать задачи с дифракционной решеткой на ИЗИ.
- 🔥 Улучшишь свои резы на 20 вторичных баллов ЕГЭ.
Что тебя ждет?
- 👉 7 вебинаров (по 1 вебчику в неделю: согласись, не напряжно, да?).
- 👉 Домашка после каждого веба (без дедлайна, лето все-таки, делай, когда удобно).
- 👉 Скрипты и конспекты, полезные материалы к каждому занятию.
- 👉 Личный кабинет Турбо (это супер-мега удобная площадка 🔥).
- 👉 Тренажёр для отработки заданий (все в том же личном кабинете).
- 👉 Отдельная беседа с преподавателями и однокурсниками.
- 👉 Комфортная атмосфера, эффективная подготовка + чувство, что лето проводишь не зря 🔥.