Все для самостоятельной подготовки к ОГЭ
Зарегистрироваться

Задание 24 из ОГЭ по математике

Разбор сложных заданий в тг-канале:
Задача 1

В параллелограмме MNPQ сторона MN в два раза меньше стороны NP. Точка Z – середина стороны MQ. Докажите, что NZ – биссектриса.

Задача 2

В трапеции ABCD точка M – середина боковой стороны CD. Докажите, что площадь треугольника ABM равна половине площади трапеции.

Задача 3

В трапеции ABCD основания BC и AD равны соответственно 8 и 24, диагональ BD в 3 раза больше меньшего основания. Докажите, что треугольники ABD и BCD подобны.

Задача 4

$PH$ и $QH_1$ являются высотами остроугольного треугольника MPQ. Докажите, что углы $HH_1P$ и $H_1PQ$ равны.

Задача 5

Докажите, что углы QNP и PMQ равны, если в выпуклом четырехугольнике MNPQ углы MNQ b MPQ равны.

Задача 6

Докажите, что AM=CN, если в параллелограмме ABCD диагонали пересекаются в точке O, через которую проведена прямая, пересекающая стороны AB и CD в точках M и N соответственно.

Задача 7

Окружности с центрами в точках $P$ и $Q$ не имеют общих точек. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении $3:7$. Докажите, что диам…

Задача 8

В выпуклом четырёхугольнике $MNPQ$ углы $NPM$ и $NQM$ равны. Докажите, что углы $MNQ$ и $MPQ$ также равны.

Задача 9

Около четырёхугольника $MNPQ$ описана окружность, а продолжения сторон $NP$ и $MQ$ пересекаются в точке $A$. Докажите, что треугольники $ANM$ и $APQ$ подобны.

Задача 10

В треугольнике $ABC$ с тупым углом $C$ проведены высоты $AA_1$ и $BB_1$. Докажите, что треугольники $A_1CB_1$ и $ABC$ подобны.

Задача 11

Окружности с центрами в точках $O_1$ и $O_2$ пересекаются в точках $A$ и $B$, причём $O_1$ и $O_2$ лежат по одну сторону от прямой $AB$. Докажите, что прямые $AB$ и $O_1O_2$ перпендикулярны.

Задача 12

В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали пересекаются в точке $M$. Докажите, что площади треугольников $AMD$ и $CBM$ равны.

Задача 13

Докажите, что медиана треугольника делит его на два треугольника, имеющих равные площади.

Задача 14

Основания $AB$ и $CD$ трапеции $ABCD$ равны соответственно $6$ и $24$, $AC=12$. Докажите, что треугольники $ABC$ и $ACD$ подобны .

Задача 15

В параллелограмме $ABCD$ точка $M$ — середина $BC$. Известно, что $AM=MD$. Докажите, что данный параллелограмм — прямоугольник.

Задача 16

Через точку $M$ пересечения диагоналей параллелограмма $ABCD$ проведена прямая, пересекающая стороны $AD$ и $BC$ в точках $E$ и $F$ соответственно. Докажите, что $AE=CF$.

Задача 17

Высоты $MM_1$ и $NN_1$ остроугольного треугольника $MNP$ пересекаются в точке $A$. Докажите, что $MA⋅ M_1A=NA⋅ N_1A$.

Задача 18

Высоты $LL_1$ и $NN_1$ остроугольного треугольника $LNO$ пересекаются в точке $F$. Докажите, что углы $LL_1N_1$ и $LNN_1$ равны.

Задача 19

В выпуклом четырёхугольнике $KLMN$ углы $LMK$ и $LNK$ равны. Докажите, что углы $LKM$ и $LNM$ также равны.

Задача 20

Основания $NP$ и $MK$ трапеции $MNPK$ равны соответственно $9$ и $25$; $NK=15$. Докажите, что треугольники $NPK$ и $MNK$ подобны.

1 2

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!