В трапеции $ ABCD $ с основаниями $ BC $ и $ AD $ построены две окружности, касающиес…
В трапеции $ ABCD $ с основаниями $ BC $ и $ AD $ построены две окружности, касающиеся боковых сторон трапеции. Первая окружность касается боковых сторон в точках $ B $ и $ C $, а вторая — в точках $ A $ и $ D $. Оказалось, что окружности касаются внешним образом, а их радиусы равны $ 2 $ и $ 3 $. Найдите высоту трапеции
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружности с радиусами $2$ и $8$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. На…
Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площа…
В треугольнике $ABC$ биссектриса $BQ$ и медиана $AT$ перпендикулярны, при этом $AT=10$, $BQ=16$. Найдите стороны треугольника $ABC$.