Зарегистрироваться Войти через вк

Из точки, данной на окружности, проведены две взаимно перпендикулярные хорды. О…

Сложность:
Среднее время решения: 1 мин. 39 сек.

Из точки, данной на окружности, проведены две взаимно перпендикулярные хорды. Отрезок, соединяющий их середины, равен $6$. Найдите радиус окружности.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

В треугольнике $ABC$ биссектриса $BQ$ и медиана $AT$ перпендикулярны, при этом $AT=10$, $BQ=16$. Найдите стороны треугольника $ABC$.

Окружности с радиусами $2$ и $8$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. На…

Популярные материалы