В равнобедренном треугольнике $ABC$ ($AB=BC$) точки $M$ и $N$ — середины боковых сторон…
В равнобедренном треугольнике $ABC$ ($AB=BC$) точки $M$ и $N$ — середины боковых сторон. Найдите радиус окружности, вписанной в треугольник $MBN$, если периметр треугольника $ABC$ равен $32$, а длина отрезка $MN$ равна $6$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?
Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?
Две касающиеся внешним образом в точке $T$ окружности, радиусы которых равны $17$ и $51$, вписаны в угол с вершиной $Q$. Общая касательная к этим окружностям, проходящая через точку $T$, пер…