Зарегистрироваться Войти через вк

В трапеции $ABCD$ основания $AD$ и $BC$ равны соответственно $72$ и $18$, а сумма углов п…

Сложность:
Среднее время решения: 3 мин. 44 сек.

В трапеции $ABCD$ основания $AD$ и $BC$ равны соответственно $72$ и $18$, а сумма углов при основании $AD$ равна $90^°$. Найдите радиус окружности, проходящей через точки $A$ и $B$ и касающейся прямой $CD$, если $AB=18$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На стороне $BC$ остроугольного треугольника $ABC$ $(AB≠ AC)$ как на диаметре построена полуокружность, пересекающая высоту $AL$ в точке $Q$, $AL=16$, $QL=10$, $H$ — точка пересечения высот треугол…

Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площа…

Две касающиеся внешним образом в точке $M$ окружности, радиусы которых равны $14$ и $42$, вписаны в угол с вершиной $A$. Общая касательная к этим окружностям, проходящая через точку $M$, пер…

Найдите площадь трапеции, диагонали которой равны $8$ и $15$, а средняя линия равна $8{,}5$.

Популярные материалы