Зарегистрироваться Войти через вк

Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стор…

Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площади треугольника $ABK$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите площадь трапеции, диагонали которой равны $7$ и $24$, а средняя линия равна $12{,}5$.

В треугольнике $ABC$ биссектриса $BM$ и медиана $AN$ перпендикулярны, при этом $AN=8$, $BM=12$. Найдите стороны треугольника $ABC$.

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Популярные материалы