Биссектрисы углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $M$. Найдите пл…
Биссектрисы углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $M$. Найдите площадь параллелограмма, если $BC=15$, а расстояние от точки $M$ до стороны $AB$ равно $6$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна $8$, а площадь равна $8√ 3$.
В равнобедренную трапецию, периметр которой равен $104$, а площадь равна $624$, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего осн…
Из вершины прямого угла $C$ треугольника $ABC$ проведена высота $CP$. Радиус окружности, вписанной в треугольник $BCP$, равен $48$, тангенс угла $BAC$ равен ${12} / {5}$. Найдите радиус вписанно…