Зарегистрироваться Войти через вк

Задание 26 из ОГЭ по математике. Страница 2

Задача 21

Найдите площадь трапеции, диагонали которой равны $8$ и $15$, а средняя линия равна $8{,}5$.

Задача 22

В равнобедренную трапецию, периметр которой равен $104$, а площадь равна $624$, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего осн…

Задача 23

Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площа…

Задача 24

В треугольнике $ABC$ биссектриса $BQ$ и медиана $AT$ перпендикулярны, при этом $AT=10$, $BQ=16$. Найдите стороны треугольника $ABC$.

Задача 25

Из вершины прямого угла $C$ треугольника $ABC$ проведена высота $CT$. Радиус окружности, вписанной в треугольник $ACT$, равен $160$, тангенс $∠ BAC$ равен ${15} / {8}$. Найдите радиус вписанной …

Задача 26

Из вершины прямого угла $C$ треугольника $ABC$ проведена высота $CP$. Радиус окружности, вписанной в треугольник $BCP$, равен $48$, тангенс угла $BAC$ равен ${12} / {5}$. Найдите радиус вписанно…

Задача 27

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $18:5$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

Задача 28

На стороне $BC$ остроугольного треугольника $ABC$ $(AB≠ AC)$ как на диаметре построена полуокружность, пересекающая высоту $AL$ в точке $Q$, $AL=25$, $QL=15$, $H$ — точка пересечения высот треугол…

Задача 29

На стороне $BC$ остроугольного треугольника $ABC$ $(AB≠ AC)$ как на диаметре построена полуокружность, пересекающая высоту $AL$ в точке $Q$, $AL=16$, $QL=10$, $H$ — точка пересечения высот треугол…

Задача 30

В трапеции $KLMN$ боковая сторона $KL$ перпендикулярна основанию $LM$. Окружность проходит через точки $M$ и $N$ и касается прямой $KL$ в точке $S$. Найдите расстояние от точки $S$ до прямой $MN$, е…

Задача 31

Биссектрисы углов $K$ и $L$ параллелограмма $KLMN$ пересекаются в точке $P$. Найдите площадь параллелограмма, если $LM=20$, а расстояние от точки $P$ до стороны $KL$ равно $7$.

Задача 32

Биссектрисы углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $M$. Найдите площадь параллелограмма, если $BC=15$, а расстояние от точки $M$ до стороны $AB$ равно $6$.

Задача 33

В выпуклом четырёхугольнике $SKLM$ диагональ $SL$ является биссектрисой угла $KSM$ и пересекается с диагональю $KM$ в точке $W$. Найдите $SW$, если известно, что около четырёхугольника $SKLM$ мо…

Задача 34

Найдите площадь четырёхугольника $ABCD$ (см. рис.), вершины которого заданы своими координатами: $A(2;2)$, $B(3,5)$, $C(6;6)$, $D(5;3)$.

Задача 35

Окружность касается двух смежных сторон квадрата и делит каждую из двух других его сторон на отрезки, равные $2$ и $23$. Найдите радиус окружности.

Задача 36

Из точки, данной на окружности, проведены две взаимно перпендикулярные хорды. Отрезок, соединяющий их середины, равен $6$. Найдите радиус окружности.

Задача 37

В окружности радиуса $17{,}5$ проведены диаметр $AB$, хорды $AC$ и $CB$, перпендикуляр $CD$ к диаметру $AB$. Найдите сумму длин хорд $AC$ и $CB$, если $AC:AD=5:3$.

Задача 38

К окружности проведена касательная $AB$ ($B$ — точка касания). Прямая $AM$ проходит через центр окружности и пересекает ее в точках $M$ и $N$. Найдите квадрат расстояния от точки $B$ до прямой…

Задача 39

К окружности проведена касательная $AB$ ($B$ — точка касания). Прямая $AC$ пересекает окружность в точках $C$ и $D$. Найдите $AD$, если $AC=1$, $AB=√ {3}$.{

Задача 40

Центры двух окружностей находятся на расстоянии $√ {80}$. Радиусы окружностей равны $4$ и $8$. Найдите длину общей касательной.

1 2 3 4 5

Популярные материалы