Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ

Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды

или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Информатика
География
ОГЭ

Задания ЕГЭ по теме «Четырехугольники»

Задача 1

Основания равнобедренной трапеции равны $7$ и $17$ соответственно, боковые стороны равны $13$. Найдите тангенс острого угла трапеции.

Задача 2

Основания трапеции равны $10$ и $5$, а диагонали — $9$ и $12$. Найдите площадь трапеции.

Задача 3

Основания равнобедренной трапеции равны $11$ и $91$. Высота трапеции равна $16$. Найдите тангенс острого угла.

Задача 4

Найдите площадь ромба, если его высота равна $√ {2}$, а тупой угол $150°$.

Задача 5

В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $2$. Диагонали трапеции пересекаются в точке $O$, площадь треугольника $BOC$ равна $3$. Найдите площадь четырёхугольника $BOCP$, где $P$ …

Задача 6

Средняя линия трапеции равна 10 и делит площадь трапеции в отношении $3:5$. Найдите длину большего основания трапеции.

Задача 7

Диагонали трапеции взаимно перпендикулярны, а длина её средней линии равна $9$. Найдите длину отрезка, соединяющего середины оснований трапеции.

Задача 8

В прямоугольнике $ABCD$ сторона $AB=1{,}6$, а диагональ прямоугольника равна $2$. Найдите синус угла $ACD$.

Задача 9

Диагонали четырёхугольника равны $6$ и $9$ (см. рис.). Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного четырёхугольника.

Задача 10

Прямоугольная трапеция описана около окружности. Точка касания делит боковую сторону трапеции на отрезки длиной $2$ и $8$. Найдите периметр трапеции.

Задача 11

В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекают сторону $AD$ в точках $L$ и $K$ соответственно. Найдите площадь параллелограмма $ABCD$, если известно, что $BL\!=5$, $CK\!=12$ и $AB:\!AD\!=2:3$.…

Задача 12

В параллелограмме $ABCD$ $AB=20$, $\cos A={4} / {5}$. Высота, опущенная из вершины $D$, пересекает сторону $BC$ в точке $H$. Найдите площадь треугольника $CDH$.

Задача 13

Определите синус острого угла параллелограмма, если его высоты равны $5$ и $7$, а периметр равен $48$.

Задача 14

В параллелограмме $ABCD$ известен $\sin A={√ {19}} / {10}$. Найдите $\cos B$, если $∠ A$ — острый.

Задача 15

В параллелограмме $ABCD$ биссектриса угла $B$ пересекает сторону $CD$ в точке $M$ и прямую $AD$ в точке $N$. Найдите периметр треугольника $ABN$, если $MD=5$, $MN=4$, $BM=6$.

Задача 16

Диагонали ромба относятся как $3:4$. Периметр ромба равен $300$. Найдите высоту ромба.

Задача 17

В трапеции $ABCD$ с основаниями $AB$ и $CD$ диагонали $AC$ и $BD$ равны $12$ и $10$ соответственно. Найдите площадь трапеции, если $∠ CAB$ в два раза меньше $∠ ABD$.

Задача 18

Высота равнобедренной трапеции равна $4√ 3$, а продолжения боковых сторон пересекаются на расстоянии $6√ 3$ от большего основания под углом $60°$. Найдите сумму оснований трапеций.

Задача 19

В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекаются в точке $L$, лежащей на стороне $AD$. Найдите площадь параллелограмма $ABCD$, если известно, что $BL=6$, а периметр $▵ CDL$ равен …

Задача 20

В параллелограмме $ABCD$ проведена высота $CH$ к стороне $AD$. Косинус угла $A$ равен $-{√ {5}} / {5}$, а сторона $AB$ равна $2√ 5$. Прямая $BH$ делит диагональ $AC$ в отношении $3:5$, считая от верши…

1 2 3

Твой план подготовки к ЕГЭ 2017 почти готов

Построить свой план

всего за 3 минуты

Как подготовиться к ЕГЭ по математике (базовой)?