Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ

Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды

или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Информатика
География
ОГЭ

Задача повышенной сложности, часть С

Задачи повышенной сложности

Числовые множества

1. Натуральные числа – числа, которые мы используем для счета предметов, счёт начинается с единицы, поэтому ноль не является натуральным числом. Множество натуральных чисел обозначается $N$.

2. Целые числа – это ноль и «плюс – минус натуральные числа». Множество целых чисел обозначается $Z$.

3. Рациональные числа – это всевозможные дроби ${m}/{n}$, где $m$ - целое число, а $n$ – натуральное число, т.е. $n≠0$. Множество рациональных чисел обозначается $Q$.

Делимость

Число $а$ делится на число $с≠0$, если найдется такое число $b$, что $a=c·b$.

Если число $а$ делится на $с$, то число с называется делителем числа $а$.

Если числа $а$ и $b$ делятся на $с$, то их сумма $а + b$ тоже делится на $с$.

Признаки делимости:

Признак делимости на $2$

Число делится на $2$ тогда и только тогда, когда его последняя цифра ноль или делится на $2$, то есть является чётной.

Признак делимости на $3$

Число делится на $3$ тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на $4$

Число делится на $4$ тогда и только тогда, когда число из двух последних его цифр нули или делится на $4$.

Признак делимости на $5$

Число делится на $5$ тогда и только тогда, когда последняя цифра делится на $5$ (то есть равна $0$ или $5$).

Признак делимости на $6$

Число делится на $6$ тогда и только тогда, когда оно делится на $2$ и на $3$.

Признак делимости на $7$

Число делится на $7$ тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на $7$ (например, $217$ делится на $7$, так как $21 — (2 · 7) = 7$ делится на $7$).

Признак делимости на $8$

Число делится на $8$ тогда и только тогда, когда три его последние цифры - нули или образуют число, которое делится на $8$.

Признак делимости на $9$

Число делится на $9$ тогда и только тогда, когда сумма его цифр делится на $9$.

Признак делимости на $10$

Число делится на $10$ тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на $11$

Число делится на $11$ тогда и только тогда, когда сумма цифр с чередующимися знаками делится на $11$ (то есть $182919$ делится на $11$, так как $1 - 8 + 2 - 9 + 1 - 9 = -22$ делится на $11$). Следствие факта, что все числа вида $10^n$ при делении на $11$ дают в остатке $(-1)^n$.

Признак делимости на $12$

Число делится на $12$ тогда и только тогда, когда оно делится на $3$ и на $4$.

Признак делимости на $13$

Число делится на $13$ тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно $13$ (например, $949$ делится на $13$, так как $94 + (4 · 9) = 130$ делится на $13$).

Признак делимости на $14$

Число делится на $14$ тогда и только тогда, когда оно делится на $2$ и на $7$.

Признак делимости на $15$

Число делится на $15$ тогда и только тогда, когда оно делится на $3$ и на $5.$

Признак делимости на $17$

Число делится на $17$ тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно $17.$

Признак делимости на $19$

Число делится на $19$ тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно $19$ (например, $646$ делится на $19$, так как $64 + (6 · 2) = 76$ делится на $19$).

Четность и нечетность чисел

  1. Число называется четным, если оно делится нацело на $2$. Если $а$ четное число, то его вид можно записать $a=2n$.
  2. Число называется нечетным, если оно не делится нацело на $2$. Если $а$ нечетное число, то его вид можно записать $a=2n+1$.
  3. Сумма любого количества четных слагаемых четна.
  4. Сумма четного количества нечетных слагаемых – четное число.
  5. Сумма нечетного количества нечетных слагаемых – нечетное число.
  6. Если в произведении все множители нечетные числа, то произведение – нечетное число.
  7. Если в произведении попадется хотя бы одно четное число, то в результате умножения получится четное число.

Простые и взаимно простые числа

Простые числа – это целые числа, большие единицы, которые имеют только два положительных делителя, а именно самих себя и $1$.

Взаимно простые числа – это числа, которые не имеют общих делителей, кроме единицы. Например, числа $15$ и $4$ взаимно просты, так как их общий делитель равен $1$.

Свойства взаимно простых чисел.

Пусть $а$ и $b$ – взаимно простые числа, тогда для них справедливы следующие высказывания.

  1. Если некоторое число делится на $а$ и $b$, то оно делится и на их произведение $аb$.
  2. Если произведение $ас$ делится на $b$, то с делится на $b$.
  3. Если целые числа $а$ и $b$ взаимно просты, то их сумма $(а + b)$ и произведение $(а·b)$ так же являются взаимно простыми числами.
  4. Если целые числа $а$ и $b$ взаимно просты, то НОД (наименьший общий делитель) из суммы $(а + b)$ или разности ($а - b$) равен $1$ или $2$.
  5. Любые два последовательных натуральных числа взаимно просты.
  6. Если целые числа $а$ и $b$ взаимно просты, то НОД $(а + b$ или $a^2-ab+b^2)$ равен $1$ или $3$.
Числовые свойства степеней
  1. Точный квадрат целого числа не может оканчиваться цифрами $2, 3, 7, 8,$ а также нечётным количеством нулей.
  2. Квадрат натурального числа либо делится на $4$, либо при делении на $8$ даёт остаток $1$.
  3. Квадрат натурального числа либо делится на $9$, либо при делении на $3$ даёт остаток $1$.
  4. Разность квадратов двух целых чисел одинаковой четности делится на $4$.
  5. При делении на $3$ куб целого числа и само число дают одинаковые остатки $(0,1,2)$.
  6. При делении на $9$ куб целого числа дает в остатке $0,1$ или $8$.
  7. При делении на $4$ куб целого числа дает в остатке $0,1$ или $3$.
  8. Число $m^5$ оканчивается на ту же цифру, что и число $m$.

Среднее арифметическое чисел

Среднее арифметическое нескольких величин — это отношение суммы величин к их количеству.

Чтобы вычислить среднее арифметическое нескольких чисел, нужно взять сумму этих чисел и разделить все на количество слагаемых. Частное и будет средним арифметическим этих чисел.

Среднее геометрическое чисел

Чтобы найти среднее геометрическое чисел надо:

  1. Перемножить все числа
  2. Из полученного выражения в п.1 надо извлечь корень, степени, равной количеству элементов ряда.

Пример:

Найдите среднее геометрическое чисел $3,9,8$

Решение:

1. Найдем произведение чисел $3·9·8=216$

2. Извлечем корень третьей степени из полученного произведения

$√^3{216}=6$ – полученный результат и есть среднее геометрическое.

Ответ: $6$

Факториал

Факториал числа — это произведение натуральных чисел от $1$ до самого числа (включая данное число). Обозначается знаком (!).

$n!=1·2·3·….·n$

Факториал нуля равен единице $0!=1$

Пример:

Вычислите $7!$

Решение:

7!=1·2·3·4·5·6·7=5040

Ответ: 5040

Последовательности

Последовательность чисел – это набор чисел, в котором каждому числу можно присвоить некоторый номер, причем каждому номеру соответствует единственное число данного набора. Номер числа – это всегда натуральное число, нумерация номеров начинается с единицы. Число с номером $n$ (то есть $n$ - ый член последовательности) обычно обозначается $a_n$.

Большинство последовательностей можно задать аналитическим способом.

Последовательность задана аналитически, если указана формула ее $n$ – го члена. Например, $a_n=4n+3$. В данной формуле указав конкретное число $n$, нетрудно найти член последовательности с соответствующим номером. Если номер $n=5$, то подставим $5$ в формулу последовательности, получим числовое выражение, вычислив которое получим член последовательности с соответствующим номером. $a_5=4·5+3=23$

Прогрессии

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

$а_1$ - первый член арифметической прогрессии

$d$ - разность между последующим и предыдущим членом прогрессии

$d=a_(n+1)-a_n$

$a_n$ - член арифметической прогрессии, стоящий на $n$-ом месте

$n$ - номер места для членов арифметической прогрессии

$S_n$ - сумма первых n членов арифметической прогрессии

Формула, для нахождения n-ого члена прогрессии:

$a_n=a_1+d(n-1)$

Формула суммы первых n членов арифметической прогрессии:

$S_n={(a_1+a_n)·n}/{2}$

Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.

$b_1$ - первый член геометрической прогрессии

$q$ - знаменатель геометрической прогрессии, показывает во сколько раз последующее число больше предыдущего.

$q={b_{n+1}}/{b_n}$

$b_n$ - $n$-ый член геометрической прогрессии

$S_n$ - сумма первых $n$ членов геометрической прогрессии

Формула, для нахождения $n$-ого члена прогрессии:

$b_n=b_1·q^{n-1}$

Формула суммы первых n членов арифметической прогрессии:

$S_n={b_1·(q^n-1)}/{q-1},q≠1$

Твой план подготовки к ЕГЭ 2017 почти готов

Построить свой план

всего за 3 минуты

Как подготовиться к ЕГЭ по математике (профильной)?