Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Английский язык
Информатика
География
ОГЭ

Неравенства, часть С

Теория к заданию 15 из ЕГЭ по математике (профильной)

Рациональные неравенства
 Рациональным называется всякое неравенство, сводящееся к неравенству вида

где P(x), Q(x) — некоторые многочлены.
 Поскольку
то для решения рациональных неравенств удобно применять метод интервалов.

Пример. Решите неравенство



Решение.



 Числитель последней дроби разложим на множители. Подбором находим, что x = 2 является корнем многочлена
x3 − x2 − 22x + 40; разделив данный многочлен (уголком или по схеме Горнера) на x − 2, получаем
x3 − x2 − 22 x + 40 = (x − 2)·(x2 + x − 20) = (x − 2)·(x − 4)·(x + 5). Значит, исходное неравенство равносильно системе

Решая первое неравенство этой системы методом интервалов (см. рис. 1) и выкалывая точки $x = −1, x = 3$, получаем ответ

Определение модуля числа

2. Геометрически |x| есть расстояние от точки x числовой оси до начала отсчёта — точки O.
3. |x − a| есть расстояние между точками x и a числовой оси.
4. Модуль произведения, частного и степени.
Практика: решай 15 задание и тренировочные варианты ЕГЭ по математике (профильной)