Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Точки $A$, $B$, $C$, $D$ и $E$ лежат на окружности в указанном порядке, причём $AB=AE=ED$, …

Разбор сложных заданий в тг-канале:

Точки $A$, $B$, $C$, $D$ и $E$ лежат на окружности в указанном порядке, причём $AB=AE=ED$, а прямые $AC$ и $BD$ перпендикулярны. Отрезки $BD$ и $CE$ пересекаются в точке $K$. а) Докажите, что прямая $AD$ пересекает отрезок $KE$ в его середине. б) Найдите площадь треугольника $BCK$, если $CE=5$, $AB=2$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…

Внутри квадрата $ABCD$ проведены дуги с центрами в его вершинах и радиусом ${1} / {4}AB$. На дугах окружностей с центрами в точках $A$, $B$, $C$, $D$ взяли точки $K$, $L$, $M$, $N$ соответственно так,…

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

В треугольнике $ABC$ с прямым углом $C$ $MN$ - средняя линия, параллельная стороне $AC$. Биссектриса угла $A$ пересекает луч $MN$ в точке $K$.

а) Докажите, что $△BKC~△AMK$.

б) Найдите отношение $S_{BKC} : S_{AMK}$,…