Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая сто…

Разбор сложных заданий в тг-канале:

К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.

а) Докажите, что периметр треугольника AMN равен стороне квадрата.

б) Прямая MN пересекает прямую BC в точке P. В каком отношении прямая, проходящая через точку P и центр окружности, делит сторону AB (считая от точки A), если AN : ND = 1 : 4?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

Иван и Трофим открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $10%$, а в конце четвёртого года…

В окружности с центром $O$ проведён диаметр $MN$, отмечены точка $K$ — середина дуги $MN$, точка $E$ — середина хорды $MK$ и точка $B$ — середина дуги $KN$, проведена хорда $AB$, которая проходит че…

В трапеции $ABCD$ основания $BC$ и $AD$ равны $3$ и $9$ соответственно. Из точки $K$, лежащей на стороне $CD$, опущен перпендикуляр $KL$ на сторону $AB$. Известно, что $L$ — середина стороны $AB$, $CL=4$ …