Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

В треугольной пирамиде $ABCD$ точки $M$ и $F$ являются серединами рёбер $BC$ и $AD$ соотв…

Разбор сложных заданий в тг-канале:

В треугольной пирамиде $ABCD$ точки $M$ и $F$ являются серединами рёбер $BC$ и $AD$ соответственно, а точка $E$ — точка пересечения медиан грани $ABC$. а) Докажите, что прямая $DE$ проходит через середину отрезка $MF$. б) Найдите угол между прямыми $MF$ и $AB$, если $ABCD$ — правильный тетраэдр.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…

В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник $ABC$ с основанием $AC$. Точка $D$ — середина ребра $A_1B_1$, а точка $F$ делит ребро $AC$ в отношении $AF:FC=1:3$.…

В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит ромб $ABCD$ с диагоналями $AC = 16$ и $BD = 12$.

а) Докажите, что прямые $BD_1$ и $AC$ перпендикулярны.

б) Найдите расстояние между прямыми $BD_1$ …

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны $8$, боковые рёбра равны $10$. Точка $M$ - середина ребра $CC_1$, на ребре $BB_1$ отмечена точка $N$, такая, что $BN : NB_1 = 2 : 3$.…