Хорды окружности $AC$ и $BD$ перпендикулярны и пересекаются в точке $P$. $PH$ — высота …
Хорды окружности $AC$ и $BD$ перпендикулярны и пересекаются в точке $P$. $PH$ — высота треугольника $ADP$. Угол $ADP=30°$, $AH=2$, $PC=6$. Найдите отношение площади треугольника $ADC$ к площади треугольника $ABC$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Площадь параллелограмма $ABCD$ равна $324$.Точка $P$ - середина стороны $BC$. Найдите площадь трапеции $APCD$.
Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Угол $CAB$ равен $54^°$. Найдите угол $AOB$. Ответ дайте в градусах.
Площадь параллелограмма равна 160, две его стороны равны 10 и 20. Найдите большую высоту этого параллелограмма.