На рисунке изображён график $y=f'(x)$ производной функции $f(x)$ и девять точек на …
На рисунке изображён график $y=f'(x)$ производной функции $f(x)$ и девять точек на оси абсцисс: $x_1, x_2, x_3, …, x_9$. Сколько из этих точек принадлежит промежуткам возрастания функции $f(x)$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На рисунке изображён график функции $y=f(x)$ и отмечены точки $-7$; $-5$; $-1$;$1$. В какой из этих точек значение производной наибольшее?
На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-6;9)$. Найдите количество точек максимума функции $f(x)$ на заданном интервале.
Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^{3} - 4t^{2} + t$, где $x$ - расстояние от точки отсчета в метрах, $t$ - время в секундах, измеренное с начала движен…