Зарегистрироваться Войти через вк

Точки $A$, $B$, $C$, $D$, расположенные на окружности, делят эту окружность на четыре …

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 44 сек.

Точки $A$, $B$, $C$, $D$, расположенные на окружности, делят эту окружность на четыре дуги $AB$, $BC$, $CD $ и $AD$, градусные величины которых относятся соответственно как $5:1:4:8$. Найдите угол $B$ четырёхугольника $ABCD$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите периметр прямоугольника, если его площадь равна $24$, а отношение соседних сторон равно $2 : 3$.

Площадь параллелограмма равна 160, две его стороны равны 10 и 20. Найдите большую высоту этого параллелограмма.

В параллелограмме $ABCD$ $AB = 6, AD = 9, sinA = {2}/{3}$. Найдите большую высоту параллелограмма.

В треугольнике $ABC$ равны боковые стороны $AC=BC$, $AH$ — высота, $AB=15$,
$\sin ∠ BAC=0{,}6$ (см. рис.). Найдите $BH$.