Зарегистрироваться Войти через вк

Треугольник $ABC$ вписан в окружность радиуса $√ {2}$. Его вершины делят окружность…

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 8 сек.

Треугольник $ABC$ вписан в окружность радиуса $√ {2}$. Его вершины делят окружность на три части в отношении $1:2:3$. Найдите сторону правильного треугольника, площадь которого равна площади треугольника $ABC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Периметр треугольника равен $73$, а радиус вписанной окружности равен $4$. Найдите площадь этого треугольника.

В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=7$, $\cos A={3} / {5}$
(см. рис.). Найдите $AB$.

В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=9$, $\sin A={4} / {11}$ (см. рис.). Найдите $AB$.

Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Меньшая дуга $AB$ равна $48^°$. Найдите угол $ACB$. Ответ дайте в градусах.