Зарегистрироваться Войти через вк

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну …

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 19 сек.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 6 и 4, считая от вершины, противолежащей основанию (см. рис.). Найдите периметр треугольника.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Площадь параллелограммаABCD равна 324.Точка P - середина стороны BC. Найдите площадь трапеции APCD.

Параллелограмм и прямоугольник имеют одинаковые стороны. Сколько градусов составляет острый угол параллелограмма, если его площадь относится к площади прямоугольника как $1:√ {2}$?

В треугольнике $ABC$ угол $A$ равен $26°$, угол $B$ равен $82°$, $CD$ - биссектриса внешнего угла при вершине $C$, причём точка $D$ лежит на прямой $AB$. На продолжении стороны $AC$ за точку $C$ выбрана…

Через концы $A$ и $B$ дуги окружности с центром $O$ проведены касательные $AC$ и $BC$ (см. рис.). Меньшая дуга $AB$ равна $48^°$. Найдите угол $ACB$. Ответ дайте в градусах.