Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

На столе перед нумизматом лежит 2017 монет орлом кверху. За один ход нумизмат п…

Разбор сложных заданий в тг-канале:

На столе перед нумизматом лежит 2017 монет орлом кверху. За один ход нумизмат переворачивает любые 5 различных монет. Разрешается переворачивать в том числе и те монеты, которые уже были задействованы в предыдущих ходах.

а) Может ли после 5 ходов ровно 21 монета оказаться решкой кверху?

б) Может ли через 5 ходов ровно 20 монет оказаться решкой кверху?

в) За какое наименьшее число ходов можно сделать так, чтобы все монеты оказались решкой кверху?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дана последовательность квадратов натуральных чисел: $1$, $4$, $9$, $16$, $25$, $36, …$ . Можно ли среди: а) первых десяти её членов выбрать шесть чисел так, чтобы одно из них равнялось сумме …

Множество чисел назовём особенным, если его можно разбить на два подмножества с одинаковой суммой чисел. а) Является ли множество $\{750; 751; … , 949\}$ особенным? б) Является ли мн…

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.

а) Дана непостоянная арифметическая прогрессия с натуральными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a_n^2 + a_{n+2}^2$. Сколько простых членов подряд мож…