Зарегистрироваться Войти через вк

При проведении школьной математической олимпиады итоговая сумма баллов составля…

Разбор сложных заданий в тг-канале:

При проведении школьной математической олимпиады итоговая сумма баллов составляется из трёх баллов за участие, $17$ баллов за каждую взятую и решённую задачу и $(-8)$ баллов за каждую взятую и нерешённую задачу. Каждую задачу участник выбирает себе самостоятельно в запечатанном конверте. Число задач, предлагаемых для решения, не ограничено. а) У одного из участников, решившего $m$ задач и не решившего $n$ задач, итоговая сумма оказалась равной $t$ баллов. Найдите итоговую сумму участника, решившего $3m$ задач и не решившего $3n$ задач. б) Какое минимальное число задач надо взять, чтобы итоговая сумма оказалась равной нулю? в) Докажите, что если итоговая сумма у двух участников оказалась одинаковой, то разность между числом всех задач, взятых для решения одним участником, и числом задач, взятых для решения другим участником, делится на $25$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Для проведения тестирования было подготовлено $4n + 3 (n ∈ N)$ вопросов. Результаты тестирования заносятся на отдельную карточку в одну строку, состоящую из $4n + 3$ клеток. В случае в…

Можно ли в бесконечно убывающей последовательности $1; {1} /{2} ; {1}/ {3} ; {1} /{4} ; {1}/ {5} ;. . .$ выбрать:

а) четыре числа;

б) сто чисел;

в) бесконечное множество чисел, котор…

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно $936$ и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?

На столе перед нумизматом лежит 200 монет орлом кверху. За один ход нумизмат переворачивает любые 4 различные монеты. Разрешается переворачивать и те монеты, которые уже были задей…