Зарегистрироваться Войти через вк

При каких значениях параметра $a$ система $\{\table\x^2+y^2+9=a^2+4x; \ {||x-3|-|x-6||}=y;$ …

Разбор сложных заданий в тг-канале:

При каких значениях параметра $a$ система

$\{\table\x^2+y^2+9=a^2+4x; \ {||x-3|-|x-6||}=y;$

имеет не менее трёх решений.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каких значениях параметра $a$ система

$\{\table\15{|x - 2|} + 8{|y + 3|} = 120; \x^2 - 4a^2 + 2y + 5 = 4(x - 1) - (y + 2)^2;$

имеет ровно $4$ решения?

При каком значении $a$ множеством решений неравенства
${1+2^{-x}} / {1+2^x}>{4} / {√ {x^2+2ax+a^2}}$ является множество всех отрицательных чисел?

При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?

Найдите все значения $a > 0$, при каждом из которых система

$\{\table\(x - 4)^2 + (|y| - 4)^2 = 9; \x^2 + (y - 4)^2 = a^2;$

имеет ровно $2$ решения.