Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Биссектриса острого угла параллелограмма пересекает его сторону в точке K. Окру…

Разбор сложных заданий в тг-канале:

Биссектриса острого угла параллелограмма пересекает его сторону в точке K. Окружность радиусом 3 проходит через точку пересечения диагоналей и касается трёх сторон параллелограмма, причём K - одна из точек касания.

а) Докажите, что треугольник ABK равнобедренный.

б) Найдите площадь параллелограмма.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Окружность с центром $O_1$ радиусом $9$ вписана в треугольник $ABC$. Окружности с центрами $O_2$ и $O_3$ и радиусами ${81} / {25}$ и $1$, которые вписаны в углы треугольника $A$ и $C$ соответственно…

Решите неравенство ${35·3^x}/{4+10·3^x-6·3^{2x}}≥{3^x+2}/{3^{x+1}+1}-{3^{x+1}-1}/{3^x-2}$.

Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиусом 2, касающиеся её сторон и друг…

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$, $AC=√ {21}$, $AM=2{,}5$.

а) Докажите, что треугольник $ABC$ прямоугольный.

б) Вычислите $HM$.