Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

К окружности, вписанной в правильный треугольник ABC, проведена касательная, пе…

Разбор сложных заданий в тг-канале:

К окружности, вписанной в правильный треугольник ABC, проведена касательная, пересекающая стороны AC и BC в точках M и N соответственно и касающаяся окружности в точке T.

а) Докажите, что периметр четырёхугольника KNML равен 2MN + BK, где K и L - точки касания вписанной окружности со сторонами BC и AC соответственно.

б) Найдите CM : MA, если известно, что MT : TN = 6 : 1.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Решите неравенство ${35·3^x}/{4+10·3^x-6·3^{2x}}≥{3^x+2}/{3^{x+1}+1}-{3^{x+1}-1}/{3^x-2}$.

В окружность с центром $O$ вписан остроугольный треугольник $ABC$, в котором проведена медиана $AF$, причём $∠FAC = ∠OCA$.

а) Докажите, что точка $O$ лежит на медиане $AF$.

б) Найдите площадь …

В треугольнике $MNP$ проведены медианы $MM_1$ и $NN_1$. На сторонах $MN, MP$ и $NP$ взяты соответственно точки $F, K$ и $E$, причём $FE ‖ MM_1, FK ‖ NN_1$ и $MF : MN = 1 : 3$.

а) Докажите, что $MK = {1}/{6}MP, NE = {1}/{3}PN$.…

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …