Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Бесплатный интенсив по математике (профиль)

28 марта — 3 апреля

На бесплатном интенсиве ты:
✅ Научишься решать показательные и логарифмические уравнения, которые встречаются в №5 и №12 в ЕГЭ.
✅ Сможешь выполнять №10 с показательными и логарифмическими функциями.
✅ Запомнишь квадраты и кубы чисел, которые встречаются чаще всего в вариантах.
✅ Узнаешь, как правильно оформлять уравнение №12 в бланке.
✅ Вспомнишь все свойства степеней, а также все основные сдвиги функций.

Две окружности с центрами $O_1$ и $O_2$ соответственно касаются внешним образом. Из…

Разбор сложных заданий в тг-канале:

Две окружности с центрами $O_1$ и $O_2$ соответственно касаются внешним образом. Из точки $O_1$ проведена касательная $O_1K$ ко второй окружности ($K$ - точка касания), а из точки $O_2$ проведена касательная $O_2L$ к первой окружности ($L$ - точка касания), точки $K$ и $L$ лежат по разные стороны от прямой $O_1O_2$.

а) Докажите, что $∠O_1KL = ∠O_1O_2L$.

б) Найдите радиус меньшей окружности, если дополнительно известно, что он в 4 раза меньше радиуса большей окружности, а площадь четырёхугольника $O_1KO_2L$ равна $54 + 9√6$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …

Точка $P$ - центр окружности, описанной около остроугольного треугольника $MNQ, K$ - центр вписанной в него окружности, $O$ - точка пересечения высот. Известно, что $∠NMQ = ∠PNQ + ∠PQN$.

а…

Решите неравенство ${35·3^x}/{4+10·3^x-6·3^{2x}}≥{3^x+2}/{3^{x+1}+1}-{3^{x+1}-1}/{3^x-2}$.

В окружность с центром $O$ вписан остроугольный треугольник $ABC$, в котором проведена медиана $AF$, причём $∠FAC = ∠OCA$.

а) Докажите, что точка $O$ лежит на медиане $AF$.

б) Найдите площадь …