Бесплатный интенсив по математике (профиль)
28 марта — 3 апреля
В трапеции $ABCD$, в которой $AD ‖ BC$, точка $M$ точка пересечения боковых сторон $AB$ …
В трапеции $ABCD$, в которой $AD ‖ BC$, точка $M$ точка пересечения боковых сторон $AB$ и $CD$. Прямая $MN$ пересекает основания $AD$ и $BC$ в точках $P$ и $Q$ соответственно, точка $N$ точка пересечения диагоналей трапеции.
а) Докажите, что $AP = PD$ и $BQ = QC$.
б) Найдите отношение ${BC}/{AD}$, если ${BD}/{BN}= {7}/{5}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В прямоугольном треугольнике $ABC$ точки $P$ и $K$ — середины катета $BC$ и гипотенузы $AB$ соответственно. Биссектриса угла $BAC$ пересекает прямую $KP$ в точке $R$.
а) Докажите, что точки $A$,…
В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$, $AC=√ {21}$, $AM=2{,}5$.
а) Докажите, что треугольник $ABC$ прямоугольный.
б) Вычислите $HM$.