Зарегистрироваться Войти через вк

В трапеции $ABCD$, в которой $AD ‖ BC$, точка $M$ точка пересечения боковых сторон $AB$ …

Разбор сложных заданий в тг-канале:

В трапеции $ABCD$, в которой $AD ‖ BC$, точка $M$ точка пересечения боковых сторон $AB$ и $CD$. Прямая $MN$ пересекает основания $AD$ и $BC$ в точках $P$ и $Q$ соответственно, точка $N$ точка пересечения диагоналей трапеции.

а) Докажите, что $AP = PD$ и $BQ = QC$.

б) Найдите отношение ${BC}/{AD}$, если ${BD}/{BN}= {7}/{5}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $EKP$, в котором все углы острые, проведены высоты $KB$ и $PA$. Из точек $A$ и $B$ на $KB$ и $PA$ опущены перпендикуляры $AM$ и $BN$ соответственно.
а) Докажите, что прямые $MN$ и $KP$ п…

Решите неравенство ${35·3^x}/{4+10·3^x-6·3^{2x}}≥{3^x+2}/{3^{x+1}+1}-{3^{x+1}-1}/{3^x-2}$.

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$, $AC=√ {21}$, $AM=2{,}5$.

а) Докажите, что треугольник $ABC$ прямоугольный.

б) Вычислите $HM$.

Две окружности с центрами $O_1$ и $O_2$ пересекаются в точках $M$ и $N$, причём точки $O_1$ и $O_2$ лежат по разные стороны от прямой $MN$. Продолжение диаметра $AM$ первой окружности и хорды $AN$ э…