Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Бесплатный интенсив по математике (профиль)

28 марта — 3 апреля

На бесплатном интенсиве ты:
✅ Научишься решать показательные и логарифмические уравнения, которые встречаются в №5 и №12 в ЕГЭ.
✅ Сможешь выполнять №10 с показательными и логарифмическими функциями.
✅ Запомнишь квадраты и кубы чисел, которые встречаются чаще всего в вариантах.
✅ Узнаешь, как правильно оформлять уравнение №12 в бланке.
✅ Вспомнишь все свойства степеней, а также все основные сдвиги функций.

а) Решите уравнение: $2cos^{2}({13π}/{2} + x) - √{3}sinx = 0$ б) Укажите все ко…

Разбор сложных заданий в тг-канале:

а) Решите уравнение: $2cos^{2}({13π}/{2} + x) - √{3}sinx = 0$

б) Укажите все корни уравнения, принадлежащие промежутку $[{2π};{3π}]$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $sin({π}/{2}+ x)= sin (-2x)$.

б) Найдите все корни этого уравнения, принадлежащие промежутку $[0; π]$.

а) Решите уравнение $4\cos^3x-2√ 3\cos2x+3\cos x=2√ 3$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $ \( -{17π} / {2} ; -7π\]$.

а) Решите уравнение $2 cos^2 x + 19 sin x + 8 = 0$.

б) Найдите корни уравнения, принадлежащие отрезку $[-π;{π}/{2}]$.

а) Решите уравнение $cos (2x) + 3 sin x - 2 = 0$.

б) Найдите корни уравнения, принадлежащие отрезку $[-3π;-π]$.