Зарегистрироваться Войти через вк

Найдите наибольшее значение функции $y=\log_2^2{x}-4\log_2{x}+3$ на отрезке $[{1} / {2};2]$.…

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 11 сек.

Найдите наибольшее значение функции $y=\log_2^2{x}-4\log_2{x}+3$ на отрезке $[{1} / {2};2]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Рассмотрите функцию $y = √{x^{2} + 40x + 625}$ и найдите её наименьшее значение.

Найдите точку максимума функции $y = (x + 7)^2(x - 6) + 11$.

Найдите наименьшее значение функции $y=-2\ln(x+3)^5+10x$ на отрезке $[-2{,}5 ;-1]$.

Найдите точку минимума функции $y=√ {x^2-12x+40}$.