Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Бесплатный интенсив по математике (профиль)

28 марта — 3 апреля

На бесплатном интенсиве ты:
✅ Научишься решать показательные и логарифмические уравнения, которые встречаются в №5 и №12 в ЕГЭ.
✅ Сможешь выполнять №10 с показательными и логарифмическими функциями.
✅ Запомнишь квадраты и кубы чисел, которые встречаются чаще всего в вариантах.
✅ Узнаешь, как правильно оформлять уравнение №12 в бланке.
✅ Вспомнишь все свойства степеней, а также все основные сдвиги функций.

Точка пересечения биссектрис углов $B$ и $C$ параллелограмма $ABCD$ принадлежит стор…

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 50 сек.

Точка пересечения биссектрис углов $B$ и $C$ параллелограмма $ABCD$ принадлежит стороне $AD$. Меньшая сторона параллелограмма равна $3,\!2$. Найдите его большую сторону.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=6√ {3}$, $\tg A={√ {3}} / {3}$ (см. рис.). Найдите $AB$.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 6 и 4, считая от вершины, противолежащей основа…

В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=9$, $\sin A={4} / {11}$ (см. рис.). Найдите $AB$.

В треугольнике $ABC$ угол $A$ равен $26°$, угол $B$ равен $82°$, $CD$ - биссектриса внешнего угла при вершине $C$, причём точка $D$ лежит на прямой $AB$. На продолжении стороны $AC$ за точку $C$ выбрана…