Зарегистрироваться Войти через вк

На рисунке изображён график дифференцируемой функции $y=f(x)$. На оси абсцисс отм…

Сложность:
Среднее время решения: 35 сек.

На рисунке изображён график дифференцируемой функции $y=f(x)$. На оси абсцисс отмечены семь точек: $x_1$, $x_2$, … $x_7$. Среди этих точек найдите все точки, в которых производная функции $f(x)$ отрицательна. В ответе запишите количество найденных точек.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На рисунке изображён график $y=f'(x)$ — производной функции $f(x)$, определённой на интервале $(-8;7)$. Найдите количество точек экстремума функции $f(x)$ на заданном интервале.

Материальная точка движется прямолинейно по закону $x(t) = {1}/{4}t^3 - 4t^2 + t$, где $x$ - расстояние от точки отсчёта в метрах, $t$ - время в секундах, измеренное с начала движения. В…

На рисунке изображён график $y=f'(x)$ производной функции $f(x)$. Найдите абсциссу точки, в которой касательная к графику $y=f(x)$ параллельна оси абсцисс или совпадает с ней.

Материальная точка движется прямолинейно по закону $x(t) = {1}/{3}t^3 + 2t^2 + 5t$, где $x$ - расстояние от точки отсчета в метрах, $t$ - время в секундах, измеренное с начала движения.В…