Зарегистрироваться Войти через вк

В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекаются в точке $L$, лежащей …

Сложность:
Среднее время решения: 3 мин. 34 сек.

В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекаются в точке $L$, лежащей на стороне $AD$. Найдите периметр параллелограмма $ABCD$, если известно, что $CL=12$, а площадь $▵ ABL$ равна 15.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=7$, $\cos A={3} / {5}$
(см. рис.). Найдите $AB$.

В треугольнике $ABC$ угол $C$ равен $90^°$, $AC=4√ {7}$, $\tg A={√ {3}} / {2}$ (см. рис.). Найдите $AB$.

Найдите градусную меру дуги $AC$ окружности, на которую опирается угол $ABC$ (см. рис. ). Ответ дайте в градусах.

В треугольнике $ABC$ $AC=BC$, $AH$ — высота, $AB=15$, $\sin ∠ BAC={√ {5}} / {3}$ (см. рис.). Найдите $BH$.