Зарегистрироваться Войти через вк

В параллелограмме $ABCD$ $AB = 6, AD = 9, sinA = {2}/{3}$. Найдите большую высоту п…

Сложность:
Среднее время решения: 1 мин. 58 сек.

В параллелограмме $ABCD$ $AB = 6, AD = 9, sinA = {2}/{3}$. Найдите большую высоту параллелограмма.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $ABC$ угол $C$ равен $90^°$, $BC=7$, $\cos A={3} / {5}$
(см. рис.). Найдите $AB$.

В треугольнике $ABC$ $AC=BC$, $AB=15$
и $\tg ∠ BAC={2√ {5}} / {5}$ (см. рис.). Найдите высоту $AH$.

В треугольнике $ABC$ угол $C$ равен $90°, BC = 8, sinA ={√{207}}/{16}$. Найдите высоту $CH$.

В треугольнике $ABC$ угол $A$ равен $48°$. На продолжении стороны $AB$ за точку $B$ отложен отрезок $BD$, равный стороне $BC$. Найдите угол $D$ треугольника $BCD$, если угол $ACB$ равен $62°$. Ответ дай…