Зарегистрироваться Войти через вк

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения: а) $x + S(x) = 2015$;…

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Множество чисел назовём особенным, если его можно разбить на два подмножества с одинаковой суммой чисел. а) Является ли множество $\{750; 751; … , 949\}$ особенным? б) Является ли мн…

$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…

Можно ли в бесконечно убывающей последовательности $1; {1} /{2} ; {1}/ {3} ; {1} /{4} ; {1}/ {5} ;. . .$ выбрать:

а) четыре числа;

б) сто чисел;

в) бесконечное множество чисел, котор…

Существуют ли такие восемь различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя

а) ровно в шесть раз;

б) ровно в пять раз;

в) ровно в че…