Зарегистрироваться Войти через вк

Найдите все значения $a$, при каждом из которых уравнение ${x-3a}/{x+3}+{x-2}/{x-a}=1$ …

Найдите все значения $a$, при каждом из которых уравнение ${x-3a}/{x+3}+{x-2}/{x-a}=1$ имеет единственный корень.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении $a$ множеством решений неравенства
${1+3^x} / {1+3^{-x}}>{3} / {|x+a|}$ является множество всех положительных чисел?

При каких значениях параметра $a$ система

$\{\table\5{|x|} + 12{|y - 2|} = 60; \y^2 - a^2 = 4(y - 1) - x^2;$

имеет ровно $4$ решения?

При каком значении $a$ множеством решений неравенства
${1+2^{-x}} / {1+2^x}>{4} / {√ {x^2+2ax+a^2}}$ является множество всех отрицательных чисел?

Найдите все значения $a$, при которых система уравнений

$\{\table\(x-3)^2=(y-1)^2; \(x-a)^2+(y-1)^2=3a^2-8a+9;$

имеет ровно три решения.