Зарегистрироваться Войти через вк

В прямоугольнике ABCD AB = 24, AD = 23. К окружности, радиус которой равен 12, …

В прямоугольнике ABCD AB = 24, AD = 23. К окружности, радиус которой равен 12, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точкеM.

а) Докажите, что CM = 2AM.

б) Найдите длину отрезка AM.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Один из двух отрезков, соединяющих середины противоположных сторон выпуклого четырёхугольника, делит его площадь пополам, а другой — в отношении ${6} / {7}$. а) Докажите, что данный …

Точка $M$ - центр окружности, описанной около остроугольного треугольника $NPK$, $Q$ - центр вписанной в него окружности, $W$ - точка пересечения высот. Известно, что $∠PNK = ∠MPK + ∠MKP$.

а…

В прямоугольнике ABCD AB = 16, AD = 22. К окружности, радиус которой равен 8, с центром в точке A из точки C проведена касательная, которая пересекает сторону AD в точке M.

а) Дока…

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …