Зарегистрироваться Войти через вк

Две окружности различных радиусов касаются друг друга внешним образом. Их общие…

Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из касательных касается окружностей в точках A и C, считая от точки O, а другая, - соответственно в точках B и D.

а) Докажите, что прямая CD перпендикулярна биссектрисе угла, образованного указанными касательными.

б) Найдите расстояние от середины отрезка CD до точки A, если радиусы окружностей равны 3 и 9.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В выпуклом четырёхугольнике середины противоположных сторон соединены отрезками, причём один из них делит этот четырёхугольник на две равновеликие фигуры, а другой делит площадь в …

В треугольнике $MNP$, в котором все углы острые, проведены высоты $ME$ и $PF$. Из точек $F$ и $E$ на $ME$ и $PF$ опущены перпендикуляры $FK$ и $EH$ соответственно.
а) Докажите, что прямые $KH$ и $MP$ п…

В треугольнике $ABC$ проведена высота $AH$ и медиана $AM$. $AB=2$, $AC=√ {21}$, $AM=2{,}5$.

а) Докажите, что треугольник $ABC$ прямоугольный.

б) Вычислите $HM$.

В окружность вписана трапеция $ABCD$ с основаниями $AD$ и $BC$, один из углов которой равен $60°$. В трапецию вписана ещё одна окружность.

а) Докажите, что центр описанной окружности трапе…